# Ore Peninsula Redevelopment Project

Municipality of Skagway Skagway, Alaska

30% Basis of Design



## **1.0 PROJECT DESCRIPTION**

The Municipality of Skagway (MOS) takes possession of the Ore Peninsula in March of 2023 and intends to replace several of the existing waterfront facilities to effectively accommodate cruise vessels. The following are the proposed design criteria for the Cruise Ship Dock and the Roll-On-Roll-Off (RORO) Dock and Ramp.

## 2.0 DESIGN CODES

Including, but not limited to:

- IBC 2012, International Building Code with Local Amendments
- ASCE/SEI 7-16, Minimum Design Loads for Buildings and Other Structures
- ASCE/COPRI 61-14 Seismic Design of Piers and Wharves
- ACI 318-14 Building Code Requirements for Structural Concrete
- AWS D1.1-15, D1.4-17, D1.8-16 Structural Welding Code
- AISC 360-16 Specification for Structural Steel Buildings
- AISC 341-16 Seismic Provisions for Structural Steel Buildings (2005)
- AASHTO LRFD Bridge Design Manual 9<sup>th</sup> Edition
- AASHTO LRFD Guide Specifications for the Design of Pedestrian Bridges
- 2015 Uniform Plumbing Code
- 2018 International Fuel Gas Code
- 2021 International Mechanical Code
- 2021 International Fire Code

## 3.0 GENERAL

#### 3.1 Site Datums

3.1.1 Vertical Datum:

Mean lower low water (MLLW=0.0') S.S. survey feet, based on the NOAA/NOS tidal bench mark list: 9452400 Skagway, Taiya inlet, Alaska published 05/02/2014.

#### 3.1.2 Horizontal Datum:

Alaska State Plane, Zone 1, US Foot

#### 3.1.3 General Tidal Range

| • | Extreme High Water     | 23.10 ft |
|---|------------------------|----------|
| • | Mean Higher High Water | 16.73 ft |
| • | Mean Lower Low Water   | 00.00 ft |
| • | Extreme Low Water      | -6.10 ft |



#### 3.1.4 Dredge Depth

-45.00 ft + 2 ft Over-dredge The structures will be designed to accommodate this dredge depth based on the extreme low water and assuming that cruise ships have a 35 ft draft accounting for 3 ft of under draft.

3.1.5 Bathymetry: Soundings are in U.S. survey feet and are minus unless otherwise indicated. Bathymetry was collected by Hughes & Associates on April 6-7, 2022. Soundings were collected using a r2sonic 2022 multibeam echosounder operating at 400 KHZ. Sound velocity through the water column was determined with a Valeport swift sound velocity probe. Position and vessel orientation were measured using an Applanix pos mv system. RTK corrections were broadcast form a local base station occupying "SH-D 2000". Data was collected and processed using Hypack 2022 software. Horizontal and vertical control was surveyed using RTY GNSS equipment and techniques.

#### 3.2 **General Environmental Loading**

| 3.2.1 | Risk Category                                                  | III                           |
|-------|----------------------------------------------------------------|-------------------------------|
| 3.2.2 | Wind Speed                                                     |                               |
| •     | Ultimate Wind Speed                                            | 130 mph                       |
| •     | Operational Wind Speed                                         | 40 mph (Vessels at berth)     |
| •     | Exposure Category                                              | С                             |
| 3.2.3 | Waves (Float Design)                                           |                               |
| •     | $S_{WAN 50-YRP}$ , $H_s$ = 6.8 ft, $T_p$ = 5.2 s               |                               |
| •     | $S_{WAN \ 100-YRP}, H_s = 7.3 \text{ ft}, T_p = 5.4 \text{ s}$ |                               |
| 3.2.4 | Seismic Criteria                                               |                               |
| •     | Ss                                                             | 0.78g (ATC Hazard Map)        |
| •     | S1                                                             | 0.384g (ATC Hazard Map)       |
| ٠     | Lateral Spreading: Slope stability, liquefaction a             | and lateral spreading will be |
|       | checked per the code defined ground motions.                   | Ground Improvements may be    |
|       | used to stabilize the slope and prevent liquefac               | tion in the developed areas   |
|       | where pedestrians may congregate.                              |                               |
| 3.2.5 | Snow                                                           | 185 psf                       |
| 3.2.6 | Temperature                                                    |                               |
| ٠     | Temperature Range                                              | -5° F to 90° F                |
| ٠     | Base Construction Temperature                                  | 30° F                         |
|       |                                                                |                               |

## 4.0 FACILITY SPECIFIC LOADS

#### 4.1 Cruise Dock

This dock is expected to primarily support the cruise vessels and limited vehicular traffic in the form of smaller vehicles and forklifts. See Appendix G for Float Bid Drawings.

- 4.1.1 Gangway Point Loading
- 4,000 lbs
- 4.1.2 Live Loads 90 psf For floation the float considers 40 psf live load over the entire float or ¼ of the float with 90 psf at any location.
- 4.1.3 Design Vehicles
  - AASHTO H 10 Truck Loading (Emergency Vehicles)





• Hyster Fortis 50 (S50FT) for movement of pallets and cruise ship gangways.



4.1.4 Cruise Vessels Vessel Characteristics – Quantum of the Seas Class

| LOA                                   | 1141'-9"                | 348m                  |
|---------------------------------------|-------------------------|-----------------------|
| LBP (Length at Waterline)             | 1050'-2"                | 320.1m                |
| Beam at Waterline                     | 135'-10"                | 41.4m                 |
| Bow Mooring Above Keel (Deck 5)       | 68'-9"                  | 20.95m                |
| Stern Mooring Above Keel (Deck 3)     | 47'-1"                  | 14.35m                |
| Design Draft                          | 27'-11″                 | 8.5m                  |
| Air Draft                             | 208'-2"                 | 63.44 m               |
| Max Displacement                      | 76,876 LT               | 78110t                |
| Long. Surface Area – Hull*            | 49,620 ft <sup>2</sup>  | 4,610 m <sup>2</sup>  |
| Long. Surface Area – Superstructure * | 113,130 ft <sup>2</sup> | 10,510 m <sup>2</sup> |
| Transverse Surface Area**             | 25,460 ft <sup>2</sup>  | 2,365 m <sup>2</sup>  |

<sup>1</sup>value estimated from vessel elevation drawings

<sup>2</sup>value estimated to be 90% of (Beam at Waterline) x (Air Draft) <sup>3</sup>A complete list of design vessels is provided in Appendix A

4.1.5 Vessel Mooring

| Dolphins |  |
|----------|--|
|----------|--|

|       | Mooring Bollards                 | 200 Ton              |
|-------|----------------------------------|----------------------|
|       | Range of Horizontal Pull         | 0 to 180 degrees     |
|       | Range of Vertical Pull           | -20 to 60 degrees    |
|       | Float                            |                      |
|       | Mooring Bollards                 | 150 Ton              |
|       | Range of Horizontal Pull         | 0 to 180 degrees     |
|       | Range of Vertical Pull           | -20 to 60 degrees    |
| 4.1.6 | Vessel Berthing                  |                      |
| •     | Approach Velocity                | 0.2 knot (0.32 ft/s) |
| •     | Accidental Berthing Factor       | 1.5                  |
| 4.1.7 | Tidal Ranges                     |                      |
| ٠     | Max Operating Tide               | 24.14 ft MLLW        |
| ٠     | Min Operating Tide               | -6.10 ft MLLW        |
| 4.1.8 | MEP Equipment/Lights/Ducts/Pipes | 5 psf.               |
|       |                                  |                      |

## 4.2 Roll-On Roll-Off (RORO) Dock

This dock is expected to support RORO operations including trucks and forklifts capable of moving fully loaded shipping containers.

| 4.2.1 | Live Loads                    |          |
|-------|-------------------------------|----------|
| ٠     | General Live Load             | 1000 psf |
| 4.2.2 | Ramp Loads/Design Vehicles    |          |
| •     | Front Axle                    | 259 kip  |
| •     | Rear Axle                     | 32 kip   |
| ٠     | Point Load Transverse Spacing | 13'-11"  |



• Point Load Longitudinal Spacing





• AASHTO HL-93 Truck Loading





The HL-93 design truck is intended to represent a generic vehicle that could encompass Special Haul Vehicles (SHV) such as a dump truck up to 80,000 GVW.



- Tracked Crawler Crane
  - o Tracked Load

460 kips



Ore Peninsula Redevelopment Project 30% Basis of Deign Page | 5



(Example tracked crawler crane)

CAT 395 Hydraulic Excavator

0

| 0 | Track Gauge      | 11.60 ft             |
|---|------------------|----------------------|
| 0 | Crane Width      | 12.90 ft             |
| 0 | Operating Weight | 207.30 kips          |
| 0 | Bucket           | 6.80 yd <sup>3</sup> |



Wheeled Front End Loader

300.00 kips



(Example Wheeled Front End Loader)

4.2.3 Barges - The following vessel information is representative of the typical vessels that may utilize the new AML dock.

| AML Dock Vessel Data |            |       |        |            |      |        |             |  |
|----------------------|------------|-------|--------|------------|------|--------|-------------|--|
| Vascal               | Convice    | Draft | Length | Length     | Beam | Height | DWT         |  |
| vessei               | Service    | (ft)  | (ft)   | w/Tug (ft) | (ft) | (ft)   | (Long Tons) |  |
| AML Cargo Barge      | AML        | 17.0  | 360    | -          | 100  | -      | -           |  |
| One Cure             | Petro Mar. | 16.5  | 111.3  | -          | 36.0 | -      | -           |  |
| Zidell Marine-277    | Petro Mar. | 20.5  | 421.5  | 495.7      | 76.5 | -      | 13735.73    |  |
| Dale R. Lindsey      | Petro Mar. | 16.0  | 90.9   | -          | 37.9 | -      | -           |  |
| Petro Mariner        | Petro Mar. | -     | 222    | 282.6      | 64.5 | -      | 5226.39     |  |

<sup>1</sup>A list of additional design vessels is provided in Appendix B

| 4.2.4 | Vessel Mooring                         |                                 |
|-------|----------------------------------------|---------------------------------|
| •     | Mooring Bollards                       | 50 Ton                          |
| •     | Range of Horizontal Pull               | 0 to 180 degrees                |
| •     | Range of Vertical Pull                 | -10 to 10 degrees               |
| 4.2.5 | Vessel Berthing                        |                                 |
| •     | Approach Velocity                      | 1 knot (1.69 ft/s)              |
| •     | Accidental Berthing Factor             | 1.5                             |
| 4.2.6 | Tidal Ranges                           |                                 |
|       | The RORO ramp designed for the maximum |                                 |
| •     | Max Operating Tide                     | 19.00 ft MLLW                   |
|       |                                        | 19'-1" Maximum Vessel Freeboard |
| •     | Min Operating Tide                     | -2.00 ft MLLW                   |
|       |                                        | 3'-7" Minimum Vessel Freeboard  |
| 4.2.7 | MEP Equipment/Lights/Ducts/Pipes       | 5 psf.                          |
|       |                                        |                                 |

#### 4.3 Marine Service Platform

- 4.3.1 All loads as defined for the RORO Dock
- 4.3.2 Liebherr LHM 280 Mobile harbor crane

#### 5.0 SERVICEABILITY AND CATHODIC PROTECTION

- Structures will be designed for a standard 50-year service life with typical maintenance
- All exposed steel will be galvanized.
- Bollards will be galvanized, and epoxy coated
- Safety Ladders will be fiberglass reinforced polymer
- Cathodic Protection for exposed steel elements will be evaluated
- Epoxy coatings are assumed to have a 15-year service life. Following the assumed service life of epoxy coatings, members are assumed to experience 0.003 in/year of corrosion loss in the splash zone.
- RORO ramp and cruise dock access ramp epoxy coatings shall be maintained for the life of respective structures.



#### 6.0 MATERIALS SPECIFICATIONS AND STRENGTHS

#### • Unit Weights

Actual and available construction material weights shall be used for design. The following are typical unit weights:

|   | 0   | Steel or cast steel                       | 490 pcf                      |
|---|-----|-------------------------------------------|------------------------------|
|   | 0   | Concrete, reinforced (normal weight)      | 150 pcf                      |
|   | 0   | Concrete, reinforced (lightweight)        | 120 pcf                      |
|   | 0   | Compacted sand, earth, gravel, or ballast | 150 pcf                      |
|   | 0   | Asphalt paving                            | 150 pcf                      |
| , | Со  | ncrete                                    |                              |
|   | 0   | Cast-in-place                             | f' <sub>c</sub> = 5,000 psi  |
| , | Re  | inforcing Steel                           |                              |
|   | 0   | Unless Noted Otherwise                    | ASTM A 615, Grade 60         |
|   | 0   | Welded Rebar, Threaded Rebar              | ASTM A 706, Grade 60         |
|   | 0   | Smooth Welded Wire Fabric                 | ASTM A 185                   |
|   | 0   | Deformed Welded Wire Fabric               | ASTM A 497                   |
|   | 0   | Deformed Bar Anchors                      | ASTM A 496                   |
| , | Str | uctural Steel                             |                              |
|   | 0   | Wide Flange Shapes                        | ASTM A 992                   |
|   | 0   | Pipes                                     | ASTM A 53, Grade B           |
|   | 0   | Tubes – Round or Rect. HSS                | ASTM A 500, Grade C          |
|   | 0   | Angles and Channels                       | ASTM A 36                    |
|   | 0   | Plates                                    | ASTM A 36 or A 572, Grade 50 |
|   | 0   | Base Plates                               | ASTM A 36                    |
|   | 0   | Connection Material and Embedded Plates   | ASTM A 36                    |
|   | 0   | Bolts                                     | ASTM F 3125 Grade A 325      |
|   | 0   | Threaded Rods                             | ASTM A 36, UNO               |
|   | 0   | Anchor Rods in Concrete or Masonry        | ASTM F1554, Grade 55, UNO    |
|   | 0   | Welding Electrodes                        | ASTM E 70XX, UNO             |
|   | 0   | Headed Shear Studs                        | ASTM A 108                   |
|   |     |                                           |                              |

#### 7.0 CIVIL ENGINEERING

#### 7.1 **Demolition**

Existing Structures to be demolished include the following:

- Demolition of existing timber, steel, and concrete docks, platforms, walkways, catwalks, and mooring dolphins as shown in plans.
- Demolition of existing fender panels and existing fender piles
- Partial demolition of the concrete dock currently serving cruise vessels.
- Demolition of existing Ore Loader and conveyor
- Demolition of existing Ore dock and walkways
- Demolition of the existing concrete AML dock on the northeast corner of the site.
- Demolition of existing overhead power lines.



Demolition of this infrastructure will generally occur as follows. Above-water infrastructure, including concrete pads, timber decking pile caps, utilities, and piping will be removed. Then timber piles will be extracted entirely or broken off at the mudline if extraction is not practical.

The project will be constructed in a manner to limit disruptions to existing fuel, cruise, and AML operations throughout construction. The Ore Dock is important to the Municipality of Skagway and connecting communities in Canada, and the ability to transport goods across this dock must be maintained throughout each phase of construction.

## 7.2 Earthwork

## 7.2.1 Site Grading

- Minimum site grades
  - ½ percent slope for concrete surfaces
  - 1-1/2 percent slope for asphalt surfaces

## 7.2.2 Existing Shoreline Riprap

It is assumed that the existing riprap on the shoreline bank will remain in place. Except, portions of the riprap in the Northeast Berth extension area will be removed to accommodate dredging and new slope design.

## 7.3 Utilities

## 7.3.1 Storm Drainage

The existing asphalt road and storm drain system will not be altered by this project. All proposed upland work will be designed and coordinated by RESPEC.

Stormwater on the Marine Service Platform will be collected in a series of trench drains then treated to local standards before outfalling the Skagway Harbor. Details on this design will be developed in the next design phase.

## 7.3.2 Potable Water

- Materials for water piping and fittings shall comply with the applicable standard referenced in the 2015 Uniform Plumbing Code and the Municipality of Skagway.
- Vessel supply connections will be provided at all proposed facilities.

## 7.3.3 Fire Suppression System

The following will be adhered to for fire protection for the floats and docks, except where more stringent requirements are required by the NFPA 303 or NFPA 30A.

- Fire protection system including pipes and appurtenances will adhere to the 2018 International Fire Code Chapter 36 for Marinas, and by 16.03 of the City of Everett Municipal Code.
- Fire protection system maintenance shall conform to NFPA 10, 25 and 72.
- The fuel header shall be equipped with portable fire extinguishers with a minimum rating of 40-B.
- The non-fueling section of the fuel float shall be equipped with portable fire extinguishers with a minimum rating of 4A (class A extra-hazard) and will be placed in pairs at a maximum of 150-foot intervals on the float, with no portion of the float being more than 75 feet from an extinguisher (NFPA 303, NFPA 10).
- Applicable signage as required by the IFC 36 is assumed to be on site, this will be confirmed prior to final design.
- All above water level piping associated with the fire protection system will be galvanized or stainless steel, below water level piping will be steel or HDPE pipe of a pressure class to withstand the requirements of the applicable NFPA and IFC code requirements.
- Water system will be sized utilizing WaterCAD to confirm flows to most extreme portions of float per IFC 36.
- Marinas shall be equipped throughout with standpipe systems in accordance with NFPA 303. Systems shall be provided with hose connections located such that no point on the float system exceeds 150 feet from a standpipe hose connection (ASCE MREP No. 50).
- A fire phone is required to be on site per NFPA 30A section 9.5.5.
- For Class III systems (piers that extend more than 500 feet NFPA 30A), the minimum flow rate for the hydraulically most remote standpipe shall be 500 gpm with a minimum residual pressure of 100 psi for 2.5-inch hose connections (for use by fire department) and 65 psi for 1.5-inch hose stations. The minimum flow rate for additional standpipes shall be 250 gpm per standpipe with the total not to exceed 1250 gpm (NFPA 14).
- A fire department connection (FDC) for each standpipe system shall be located not more than 100 feet from the nearest fire hydrant connected to an approved water supply (NFPA 14).
- The water supply shall be sufficient to provide the system demand for at least 30 minutes.

## 7.3.4 Sanitary Sewer

- Existing Sanitary Sewer service will not be altered during this project phase.
- Dredging for the Northeast Berth Extension may conflict with an existing sewer outfall. Upland civil consultant is to field verify and reroute outfall as necessary in accordance with local standards.

## 7.3.5 Fueling Systems

- KPFF will demolish all upland fuel lines to a point just north of the proposed Roro ramp. A new fuel header and fuel line route is proposed.
- The fuel lines including all fittings and valves will be steel conforming to the following codes:
  - 2015 Uniform Plumbing Code
  - 2018 International Fuel Gas Code
  - 2021 International Mechanical Code
  - 2021 International Fire Code
- The fueling system will also adhere to NFPA 303 and NFPA 30A as applicable.
- All fittings and pipe connections are to be butt welded with the exception of flanged connections to the backflow and gate valves on the fuel header.
- Cathodic protection and isolation joints will be provided on each side of the buried line under the Roro ramp structure.

## 7.4 Fencing, Signage and Pavement Markings

Plastic traffic barriers will be used to separate the pedestrian route from the fuel transfer and AML wharf operations. In addition to the plastic traffic barriers, a 6-foot high fence is proposed to provide security to the fuel pier and AML wharf.

## 7.5 Dredging

Dredging will be conducted using mechanical methods with a clamshell bucket to remove sediments contaminated by historical activities and which are located adjacent to the Ore Dock. Data from a recent sediment quality investigation (conducted in January 2015) along with sampling to be conducted this year will be used to define the lateral and vertical extents of contaminants exceeding the remedial action objectives (RAOs) threshold concentrations, and to develop dredge prisms for the Northeast Berth Extension.

Mechanical dredging methods with a clamshell bucket is likely to be selected as the dredging method due to the following considerations:

- A large amount of water is typically generated through hydraulic dredging.
- Mechanical methods remove material in near in-situ condition, reducing the need to dewater sediment or treat generated water.
- Mechanical methods are better able to remove the expected dense and coarse material.
- Mechanical methods are better suited for removing debris.
- A standard clamshell bucket will have the ability to remove sands and gravels that are too dense to be removed by an enclosed environmental bucket.



## 7.5.1 Dredge Prism Design Elevations

The required dredge prism design elevations and adjacent slope dredge cuts were established at -37 MLLW with a 2-ft maximum allowable overdredge in the North Berth Extension area. Further separation of dredge material management units (DMMUs) will be established further along in project permitting.

## 7.5.2 Slope Dredging

The intent of the slope dredging is to remove surficial soft sediment that is assumed to be contaminated and to cut down to required dredge elevations for placement of riprap.

The dredge cut will extend from the required dredge elevations of the adjacent dredge units up the slope to above MHHW. As-built drawings of the existing riprap show the lower extent of the riprap to end in a keyway that daylights with a 6-foot-wide horizontal bench feature at -12 feet MLLW (Tippetts et al. 1968). The dredge cut proposed at the Northeast Berth Extension will completely remove existing riprap and cut at steeper slopes (2:1) then the original as-built riprap protected slopes.

The contractor will be required to remove any sediment that sloughs from the slope area into the lateral extents of the dredge prism above the required dredge elevation.

#### 7.5.3 **Dewatering**

Based on the current understanding of sediment characteristics, it is assumed that passive dewatering of the dredged sediment will occur on the barges; however, additional dewatering actions may be required for either handling purposes or to facilitate future beneficial re-use of the material. These actions could occur on the barge, at the unloading facility, or in the upland stockpile area, at the contractor's discretion.

Dredged material from the clamshell bucket will be placed directly onto a sealed barge. A sealed barge is proposed to allow for collection of effluent water on the barge itself (i.e., direct discharges to Skagway Harbor from the barge will not be allowed), and minimize the potential for dredged material and effluent water to enter Skagway Harbor.

Effluent from dewatering at both the barge and upland stockpile areas will be collected and pumped to either an upland- or barge-based water treatment system for collection and, as needed, treated to meet water quality certification discharge requirements. Permit requirements will dictate whether effluent water will require treatment prior to discharge back to the harbor, but it is currently assumed that treatment will be required prior to discharge to on-site receiving waters.



## 7.5.4 Dredging Best Management Practices

Best management practices (BMPs) may be required as permit conditions, or will be developed as part of the remedial dredging specifications to minimize, to the extent practical, potential water quality impacts and the magnitude of residual contamination, and to provide quality control of the work. Examples of dredging BMPs that may be incorporated into the project for dredging, transport, and disposal and placement operations include the following:

- Defining qualified contractor requirements for the procurement process, as allowable per MOS procurement regulations
- Contingency use of specialized equipment, such as a silt curtain
- Use of watertight barges
- Real-time environmental monitoring of contractor activities
- Use of real-time kinematic positioning system for dredging accuracy
- Contingency modifications to operational controls, such as:
  - Increasing the dredging bucket cycle time
  - o Not allowing multiple bites
  - Not allowing underwater stockpiling
  - o Controlling cut thickness along the toe of slope
  - o Not allowing bottom leveling
  - Not allowing bucket overloading
  - Not allowing barge overloading

## 7.5.5 Material Offloading and Stockpiling

Disposal, offloading and stockpiling of dredge material will be established further along in project permitting.

## 7.5.6 Material Treatment

To be provided after North Berth Extension material sampling.

## 7.6 Slope Riprap Placement

Riprap will be placed on the post-dredged slope. The riprap will be a minimum of 3.5 feet thick and have an over placement allowance of 12 inches, while the underlying the filter material will have a minimum required thickness of 12 inches, with a 12-inch over placement allowance.

A keyway will be constructed at the toe of the riprap slope with the armor rock material on the post-dredge surface to provide a toe buttress for the riprap and filter material. The keyway will be constructed in advance of placing filter or riprap material on the slope. The keyway is currently designed to be placed on the post-dredge surface, but this assumption will be discussed with MOS to determine if final elevations meet either short- or long-term operational draft requirements for the site.



## 7.7 **On-site and Off-site Re-use of Dredged Sediment**

## 7.7.1 On-site Beneficial Reuse of Dredge Material

To be addressed in next phase of project permitting.

## 7.7.2 Potential Off-site Beneficial Reuse of Dredge Material

To be addressed in next phase of project permitting.



## Appendix A – Design Cruise Vessel List

| Ship                                  | LOA [ft] | Operator                  |
|---------------------------------------|----------|---------------------------|
| Quantum of the Seas                   | 1142.00  | Royal Caribbean           |
| Ovation of Seas                       | 1138.00  | Royal Caribbean           |
| Norwegian Bliss/Joy                   | 1094.00  | Norwegian Cruise Line     |
| Norwegian Encore                      | 1094.00  | Norwegian Cruise Line     |
| Regal/Royal Princess                  | 1083.00  | Princess Cruises          |
| Discovery Princess                    | 1083.00  | Princess Cruises          |
| Majestic Princess                     | 1082.00  | Princess Cruises          |
| Eclipse Solstice                      | 1040.00  | Celebrity Cruises         |
| Enchantment of the Sea (2023)         | 988.71   | Royal Caribbean           |
| Koningsdam                            | 983.10   | Holland America Line      |
| Infinity Millennium Summit            | 965.00   | Celebrity Cruises         |
| Serenade/Radiance                     | 965.00   | Royal Caribbean           |
| Norwegian Jewel                       | 965.00   | Norwegian Cruise Line     |
| Serenade of the Sea                   | 965.00   | Royal Caribbean           |
| Queen Elizabeth                       | 964.50   | Cunard Line               |
| Coral/Island Princess                 | 964.00   | Princess Cruises          |
| Disney Wonder                         | 964.00   | Disney Cruise Line        |
| Carnival Miracle                      | 963.00   | Carnival Cruise Line      |
| Radiance of the Sea                   | 962.00   | Royal Caribbean           |
| Carnival Freedom                      | 952.00   | Carnival Cruise Line      |
| Sapphire Princess                     | 952.00   | Princess Cruises          |
| Crown/Ruby Princess                   | 950.00   | Princess Cruises          |
| Grand Princess                        | 949.00   | Princess Cruises          |
| Noordam/Oosterdam/Westerdam/Zuiderdam | 936.00   | Holland America Line      |
| Eurodam                               | 936.00   | Holland America Line      |
| Nieuw Amsterdam                       | 936.00   | Holland America Line      |
| Norwegian Spirit                      | 880.20   | Norwegian Cruise Line     |
| Norwegian Sun                         | 848.00   | Norwegian Cruise Line     |
| Crystal Serenity                      | 790.00   | Crystal Cruises           |
| Volendam (2023)                       | 781.00   | Holland America Line      |
| Viking Orion                          | 745.00   | Viking Ocean Cruises      |
| Seven Seas Explorer (2023)            | 735.00   | Regent Seven Seas Cruises |
| Seven Seas Mariner                    | 709.00   | Regent Seven Seas Cruises |
| Silver Muse                           | 698.00   | Silversea                 |
| Silver Shadow                         | 610.00   | Silversea                 |
| Silver Whisper (2023)                 | 610.00   | Silversea                 |
| Regatta                               | 593.70   | Oceania Cruises           |

<sup>1</sup>Based on the 2022 and 2023 Cruise Ship Calendars provided by Cruise Line Agencies of Alaska on 2021-12-09

## Appendix B – Design Barge List

| Vessel News        | Operator | DWT    | Overall Dimensions |        |        |  |
|--------------------|----------|--------|--------------------|--------|--------|--|
| vesser name        | Operator |        | L [ft]             | W [ft] | D [ft] |  |
| Anchorage Provider | AML      | 15,300 | 420.00             | 100.00 | 24.00  |  |
| Fairbanks Provider | AML      | 15,300 | 420.00             | 100.00 | 24.00  |  |
| Arctic Provider    | AML      | 15,202 | 420.00             | 100.00 | 24.00  |  |
| Whittier Provider  | AML      | 15,300 | 420.00             | 100.00 | 24.00  |  |
| Aleutian Trader    | AML      | 13,426 | 380.00             | 96.00  | 23.00  |  |
| Hawaii Trader      | AML      | 13,426 | 380.00             | 96.00  | 23.00  |  |
| Pacific Trader     | AML      | 13,426 | 380.00             | 96.00  | 23.00  |  |
| Polar Trader       | AML      | 13,349 | 380.00             | 96.00  | 23.00  |  |
| Westward Trader    | AML      | 13,426 | 380.00             | 96.00  | 23.00  |  |
| Southeast Provider | AML      | 13,200 | 360.00             | 100.00 | 22.00  |  |
| Stikine Provider   | AML      | 13,200 | 360.00             | 100.00 | 22.00  |  |
| Sitka Provider     | AML      | 13,200 | 360.00             | 100.00 | 22.00  |  |
| Skagway Provider   | AML      | 12,408 | 360.00             | 100.00 | 22.00  |  |
| Alaska Trader      | AML      | 10,948 | 344.00             | 94.00  | 21.00  |  |
| Anchorage Trader   | AML      | 10,597 | 344.00             | 94.00  | 21.00  |  |
| Bering Trader      | AML      | 10,881 | 344.00             | 94.00  | 21.00  |  |
| 344                | AML      | 10,500 | 330.00             | 86.00  | 21.00  |  |
| Tongass Provider   | AML      | 8,240  | 322.00             | 90.00  | 18.00  |  |
| Taku Provider      | AML      | 8,240  | 322.00             | 90.00  | 18.00  |  |
| Chatham Provider   | AML      | 6,417  | 286.00             | 76.00  | 17.00  |  |
| Chichagof Provider | AML      | 6,417  | 286.00             | 76.00  | 17.00  |  |
| Kenai Trader       | AML      | 7,071  | 285.00             | 78.00  | 18.00  |  |
| Naknek Trader      | AML      | 7,071  | 285.00             | 78.00  | 18.00  |  |
| Togiak Trader      | AML      | 3,830  | 240.00             | 60.00  | 15.00  |  |
| Yukon Trader       | AML      | 4,271  | 240.00             | 60.00  | 15.00  |  |
| Koyukuk            | AML      | 811    | 150.00             | 50.00  | 7.00   |  |
| Kamakani           | AML      | 16,867 | 438.00             | 105.00 | 25.00  |  |
| Namakani           | AML      | 17,121 | 438.00             | 105.00 | 25.00  |  |
| Alaska Provider    | BMC      | 4,304  | 250.00             | 70.00  | 15.00  |  |
| Baranof Provider   | BMC      | 2,793  | 202.50             | 60.00  | 12.00  |  |
| Cordova Provider   | BMC      | 2,793  | 202.50             | 60.00  | 12.00  |  |
| Stickeen           | BMC      | 1,500  | 150.00             | 50.00  | 10.00  |  |
| Tony Saganna       | BMC      |        | 50.00              | 24.00  | 4.00   |  |
| Western Carrier    | WTB      | 9,100  | 300.00             | 84.00  | 19.00  |  |
| Western Service    | WTB      | 6,400  | 270.00             | 70.00  | 18.00  |  |
| Western Provider   | WTB      | 5,586  | 250.00             | 70.00  | 15.00  |  |

Appendix C – OPTIMOOR Analysis



#### Arrangement for QUANTUM at Skagway Ore Dock

Vessel Data for QUANTUM (file C:\Users\pyoung\KPFF, Inc\KPFF SPRC 2021 Projects - Documents\10092100135 Skagway Ore Peninsula Multi-Use Dock\2.15 Engineering\Working\PEY\Optimoor\QoS-Stbd-Updated-22-06-09\QUANTUM-corrected-flat length fixed.vsl) Units in ft, inches, & kips Longitudinal datum at Midship LBP:1050.2 Breadth: 135.8 68.9 70.0 fwd from midship -67.9 from CL and 70 0 fwd from midship 67.9 from CL and Depth: 3.3 above deck Port Target: Stbd Target: 70.0 fwd from midship End-on projected windage area: 19377 above deck level Side projected windage area:118500 above deck level 3.3 above deck Fendering possible from: 0.364 LBP aft of midship to: 0.272 LBP fwd of midship Current drag data based on: Cruise Ship (shallow water) wind drag data based on: Cruise Ship Wave motion data based on: User specified circular motion Radius of maximum wave-induced motion: 0.30 significant wave height Radius of maximum swell-induced motion: 0.50 significant swell height Longitudinal datum at Midship 275.4 286.0 64.7 46.7 Flatside Contour X-dist -382.2 64.7 Depth

**ship** Area

| Line Fair-               | Fair-  | Ht on | Dist to        | Brake | Pre-     | Line               |      | Tail Segment-1    |
|--------------------------|--------|-------|----------------|-------|----------|--------------------|------|-------------------|
| No. Lead X               | Lead Y | Deck  | Winch          | Limit | Tension  | Size-Typ           | e-BL | Lgth-Size-Type-BL |
| 1 -558.2                 | -2.0   | -19.0 | 21.2           | 258   | 18       | 5.4 dm             | 355  |                   |
| 2 - 558.2                | 2.0    | -19.0 | 21.2           | 200   | 18       | 5.4 0m<br>5.4 dm   | 328  |                   |
| 5 -556.6<br>4 -556.6     | -25.0  | -19.0 | 20.5           | 250   | 18       | 5.4 UIII<br>5.4 dm | 328  |                   |
| 5 -555 5                 | -29.0  | -19.0 | 20.3           | 258   | 18       | 5 4 dm             | 328  |                   |
| 6 - 555.5                | 29.0   | -19.0 | 19.2           | 258   | 18       | 5.4 dm             | 328  |                   |
| 7 -527.7                 | -63.6  | -19.0 | 104.5          | 258   | 18       | 5.4 dm             | 328  |                   |
| 8 -527.7                 | 63.6   | -19.0 | 25.5           | 258   | 18       | 5.4 dm             | 328  |                   |
| 9 -522.0                 | -66.0  | -19.0 | 23.8           | 258   | 18       | 5.4 dm             | 328  |                   |
| 10 -522.0                | 66.0   | -19.0 | 25.5           | 258   | 18       | 5.4 dm             | 328  |                   |
| 11 -512.8                | -67.0  | -19.0 | 22.8           | 258   | 18       | 5.4 dm             | 328  |                   |
| 12 - 512.8<br>13 - 508 5 | 67.0   | -19.0 | 110.3<br>110.7 | 250   | 18       | 5.4 dm<br>5.4 dm   | 328  |                   |
| 13 - 508.5<br>14 - 508.5 | 67 0   | -19.0 | 110.7          | 258   | 18       | 5.4 dm             | 328  |                   |
| 15 537.0                 | -6.6   | 3.0   | 17.4           | 258   | 18       | 5.4 dm             | 328  |                   |
| 16 537.0                 | 6.6    | 3.0   | 17.4           | 258   | 18       | 5.4 dm             | 328  |                   |
| 17 502.7                 | -26.1  | 3.0   | 21.6           | 258   | 18       | 5.4 dm             | 328  |                   |
| 18 502.7                 | 26.1   | 3.0   | 21.6           | 258   | 18       | 5.4 dm             | 328  |                   |
| 19 502.7                 | -30.1  | 9.5   | 25.1           | 258   | 18       | 5.4 dm             | 328  |                   |
| 20 502.7                 | 30.1   | 9.5   | 25.1           | 258   | 18       | 5.4 dm             | 328  |                   |
| 21 498.5                 | -32.4  | 9.5   | 27.4           | 200   | 10       | 5.4 0m<br>5.4 dm   | 328  |                   |
| 22 490.3                 | -34 3  | 3.0   | 27.4           | 258   | 18       | 5.4 dm             | 320  |                   |
| 24 487 2                 | 34.3   | 3.0   | 26.2           | 258   | 18       | 5 4 dm             | 328  |                   |
| 25 483.4                 | -34.8  | 3.0   | 29.5           | 258   | 18       | 5.4 dm             | 328  |                   |
| 26 483.4                 | 34.9   | 3.0   | 29.5           | 258   | 18       | 5.4 dm             | 328  |                   |
| 27 437.3                 | -51.7  | 3.0   | 63.7           | 258   | 18       | 5.4 dm             | 328  |                   |
| 28 437.3                 | 51.7   | 3.0   | 63.7           | 258   | 18       | 5.4 dm             | 328  |                   |
| 29 426.4                 | -54.3  | 3.0   | 72.3           | 258   | 18       | 5.4 dm             | 328  |                   |
| 30 426.4                 | 54.3   | 3.0   | /2.3           | 258   | 18       | 5.4 dm             | 328  |                   |
| 51 498.5<br>32 408 5     | 27.4   | 3.0   | 23.9           | 258   | 18<br>18 | 5.4 0m<br>5.4 dm   | 328  |                   |
| 32 - 558 1               | -6.0   | -19 0 | 10 0           | 230   | 0_0      | 5.4 dm             | 328  |                   |
| 34 -558.1                | 6.0    | -19.0 | 10.0           |       | ŏ.ŏ      | 5.4 dm             | 328  |                   |
|                          |        |       |                |       |          |                    |      |                   |

Codes for Types of Line: dm: dynamax HMPE 12-strand (broken-in)

## Berth Data for Skagway Ore Dock

(file C:\Users\pyoung\KPFF, Inc\KPFF SPRC 2021 Projects - Documents\10092100135 Skagway Ore Peninsula Multi-Use Dock\2.15 Engineering\Working\PEY\Optimoor\QoS-Stbd-Updated-22-06-09\berth-4-2-19.bth) Units in ft & kips

| Left to Right of Screen Site Plan Points:<br>width of Channel (for Current):<br>Pier Height (Fixed) above Datum:<br>Seabed Depth in way of Ship below Datum: |   | 45°<br>3281<br>14.0<br>65.6 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------|
| Permissible Surge Excursion FWd/ATT:                                                                                                                         | ± | 3.00                        |
| Permissible Sway Excursion Port/Stbd:                                                                                                                        | ± | 3.00                        |
| Permissible Vertical Movement:                                                                                                                               | ± | 3.00                        |
| Dist of Berth Target to Right of Origin:                                                                                                                     |   | 0.0                         |
| Wind Speed Specified at Height:                                                                                                                              |   | 32.8                        |
| Current Specified at Depth:                                                                                                                                  |   | 0.0                         |

| Hook/   | X-Dist    | Dist to     | Ht above | Allowable |
|---------|-----------|-------------|----------|-----------|
| Bollard | to Origin | Fender Line | Pier     | Load      |
| Α       | -748.8    | 70.0        | 12.0     | 400       |
| В       | -669.0    | 22.0        | 12.0     | 400       |
| С       | -574.9    | 22.0        | 12.0     | 200       |
| D       | -483.2    | 22.0        | 12.0     | 200       |
| E       | -403.5    | 22.0        | 12.0     | 200       |
| F       | -329.7    | 25.0        | 12.0     | 200       |
| G       | -303.6    | 17.0        | 2.0      | 200       |
| Н       | -170.8    | 17.0        | 2.0      | 200       |
| I       | 51.3      | 17.0        | 2.0      | 200       |
| J       | 184.5     | 17.0        | 2.0      | 200       |
| L       | 235.3     | 20.0        | 15.0     | 400       |
| М       | 370.0     | 20.0        | 15.0     | 400       |
| 0       | 495.0     | 20.0        | 15.0     | 400       |

| Fende                                                       | r X-<br>to                                                                                                 | Dist<br>Origin                                                                                                         | Ht         | above<br>atum                                                              | Wi<br>Alona                                                                                            | dth<br>Side                                                                        | Face<br>Are                                                                                               | Contac<br>a (ft²                                                                                                               | t<br>)      |             | -          |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------|
| aa<br>bb<br>cd<br>eff<br>ghh<br>ij<br>kkl<br>mn<br>oo<br>pp | to<br>-75<br>-66<br>-57<br>-48<br>-40<br>-32<br>-26<br>-21<br>-3<br>2<br>9<br>14<br>23<br>433<br>53<br>-14 | 0r1g1n<br>0.5<br>9.4<br>5.4<br>3.5<br>9.7<br>7.7<br>7.2<br>7.7<br>1.7<br>0.9<br>4.8<br>6.0<br>4.0<br>4.6<br>3.6<br>3.7 | ı D        | atum<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0 | A I ong<br>4<br>4<br>4<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | Side<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | Are<br>48<br>48<br>48<br>48<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98 | a (+t <sup>2</sup><br>.4<br>.4<br>.4<br>.4<br>.4<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | J           |             |            |
| qq<br>Fende                                                 | -9<br>r Load                                                                                               | 0.9<br>-Compr                                                                                                          | ession     | 3.0<br>Data                                                                | 7                                                                                                      | .0                                                                                 | 98                                                                                                        | .0                                                                                                                             |             |             |            |
| aa                                                          | 6<br>0.10                                                                                                  | 12<br>0.20                                                                                                             | 30<br>0.50 | 36<br>0.60                                                                 | 48<br>0.80                                                                                             | 63<br>1.00                                                                         | 78<br>1.20                                                                                                | $\begin{array}{c} 101 \\ 1.50 \end{array}$                                                                                     | 144<br>2.00 | 199<br>2.60 | kips<br>ft |
| bb                                                          | 6                                                                                                          | 12                                                                                                                     | 30         | 36                                                                         | 48                                                                                                     | 63                                                                                 | 78                                                                                                        | 101                                                                                                                            | 144         | 199         | kips       |
|                                                             | 0.10                                                                                                       | 0.20                                                                                                                   | 0.50       | 0.60                                                                       | 0.80                                                                                                   | 1.00                                                                               | 1.20                                                                                                      | 1.50                                                                                                                           | 2.00        | 2.60        | ft         |
| сс                                                          | 6                                                                                                          | 12                                                                                                                     | 30         | 36                                                                         | 48                                                                                                     | 63                                                                                 | 78                                                                                                        | 101                                                                                                                            | 144         | 199         | kips       |
|                                                             | 0.10                                                                                                       | 0.20                                                                                                                   | 0.50       | 0.60                                                                       | 0.80                                                                                                   | 1.00                                                                               | 1.20                                                                                                      | 1.50                                                                                                                           | 2.00        | 2.60        | ft         |
| dd                                                          | 6                                                                                                          | 12                                                                                                                     | 30         | 36                                                                         | 48                                                                                                     | 63                                                                                 | 78                                                                                                        | 101                                                                                                                            | 144         | 199         | kips       |
|                                                             | 0.10                                                                                                       | 0.20                                                                                                                   | 0.50       | 0.60                                                                       | 0.80                                                                                                   | 1.00                                                                               | 1.20                                                                                                      | 1.50                                                                                                                           | 2.00        | 2.60        | ft         |
| ee                                                          | 6                                                                                                          | 12                                                                                                                     | 30         | 36                                                                         | 48                                                                                                     | 63                                                                                 | 78                                                                                                        | 101                                                                                                                            | 144         | 199         | kips       |
|                                                             | 0.10                                                                                                       | 0.20                                                                                                                   | 0.50       | 0.60                                                                       | 0.80                                                                                                   | 1.00                                                                               | 1.20                                                                                                      | 1.50                                                                                                                           | 2.00        | 2.60        | ft         |
| ff                                                          | 6                                                                                                          | 12                                                                                                                     | 30         | 36                                                                         | 48                                                                                                     | 63                                                                                 | 78                                                                                                        | 101                                                                                                                            | 144         | 199         | kips       |
|                                                             | 0.10                                                                                                       | 0.20                                                                                                                   | 0.50       | 0.60                                                                       | 0.80                                                                                                   | 1.00                                                                               | 1.20                                                                                                      | 1.50                                                                                                                           | 2.00        | 2.60        | ft         |
| gg                                                          | 18                                                                                                         | 38                                                                                                                     | 58         | 78                                                                         | 100                                                                                                    | 126                                                                                | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                                                             | 0.38                                                                                                       | 0.80                                                                                                                   | 1.19       | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                                               | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| hh                                                          | 18                                                                                                         | 38                                                                                                                     | 58         | 78                                                                         | 100                                                                                                    | 126                                                                                | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                                                             | 0.38                                                                                                       | 0.80                                                                                                                   | 1.19       | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                                               | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| ii                                                          | 18                                                                                                         | 38                                                                                                                     | 58         | 78                                                                         | 100                                                                                                    | 126                                                                                | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                                                             | 0.38                                                                                                       | 0.80                                                                                                                   | 1.19       | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                                               | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| jj                                                          | 18                                                                                                         | 38                                                                                                                     | 58         | 78                                                                         | 100                                                                                                    | 126                                                                                | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                                                             | 0.38                                                                                                       | 0.80                                                                                                                   | 1.19       | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                                               | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| kk                                                          | 18                                                                                                         | 38                                                                                                                     | 58         | 78                                                                         | 100                                                                                                    | 126                                                                                | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                                                             | 0.38                                                                                                       | 0.80                                                                                                                   | 1.19       | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                                               | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| 11                                                          | 18                                                                                                         | 38                                                                                                                     | 58         | 78                                                                         | 100                                                                                                    | 126                                                                                | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                                                             | 0.38                                                                                                       | 0.80                                                                                                                   | 1.19       | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                                               | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| mm                                                          | 18                                                                                                         | 38                                                                                                                     | 58         | 78                                                                         | 100                                                                                                    | 126                                                                                | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                                                             | 0.38                                                                                                       | 0.80                                                                                                                   | 1.19       | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                                               | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| nn                                                          | 18                                                                                                         | 38                                                                                                                     | 58         | 78                                                                         | 100                                                                                                    | 126                                                                                | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                                                             | 0.38                                                                                                       | 0.80                                                                                                                   | 1.19       | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                                               | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| 00                                                          | 18                                                                                                         | 38                                                                                                                     | 58         | 78                                                                         | 100                                                                                                    | 126                                                                                | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                                                             | 0.38                                                                                                       | 0.80                                                                                                                   | 1.19       | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                                               | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| рр                                                          | 18                                                                                                         | 38                                                                                                                     | 58         | 78                                                                         | 100                                                                                                    | 126                                                                                | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                                                             | 0.38                                                                                                       | 0.80                                                                                                                   | 1.19       | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                                               | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |

| qq | 18   | 38   | 58   | 78   | 100  | 126  | 152  | 186  | 221  | 257 kips |
|----|------|------|------|------|------|------|------|------|------|----------|
|    | 0.38 | 0.80 | 1.19 | 1.56 | 1.93 | 2.35 | 2.75 | 3.24 | 3.73 | 4.19 ft  |

#### Static Mooring Response for QUANTUM at Skagway Ore Dock

Static Analysis for Time: 1537 Jan 09 2019 (initialised at 1537 Jan 09 2019) Water Level: 16.00 above Datum (initialised at this water level) Draft: 26.20 (initialised at this draft)) Trim: 0.00 (initialised at this trim) Bottom Clearance: 55.4 Fwd Offset of Vessel Target: 213.0 from Berth Target Vessel Stbd Target: 48.0 above Pier Wind Speed: 40 knots Wind Direction from: All°

Total End-on Windage Area: 25176 Total Side Windage Area:163344

Longitudinal Transverse Yaw Moment/LBP

0.00 (up) 0.00 (up)

| Movement of Vessel | 0.51 (fwd)  | -0.94 (out) | 0.1° (port)  |
|--------------------|-------------|-------------|--------------|
| at its Stbd Target | -0.10 (aft) | 2.04 (inw)  | -0.2° (stbd) |

| Line to<br>Bollard<br>1-0<br>3-0<br>4-M<br>5-0<br>6-M<br>8-L<br>10-L<br>12-L<br>14-L<br>15-A<br>16-A<br>18-A<br>20-B<br>22-B<br>24-C<br>26-D<br>28-E<br>30-E<br>31-B<br>33-0<br>34-M | Pull<br>-in<br>0.48<br>0.55<br>0.50<br>0.56<br>0.48<br>0.46<br>0.45<br>0.62<br>0.61<br>0.69<br>0.66<br>0.64<br>0.48<br>0.48<br>0.41<br>0.41<br>0.45<br>0.44<br>0.45<br>0.44<br>0.45<br>0.23<br>0.33 | Tot.Line<br>Length<br>141.4<br>159.3<br>96.0<br>163.2<br>92.1<br>176.8<br>170.8<br>246.3<br>242.0<br>180.7<br>169.2<br>177.1<br>101.4<br>103.3<br>112.0<br>186.6<br>247.6<br>245.2<br>100.4<br>133.5<br>103.8 | e In-Line<br>±Motion                                                                      | Winch<br>Slip<br>1.4                                                                  | Worst Dir<br>to Screen<br>-50°<br>-60°<br>-60°<br>165°<br>165°<br>165°<br>165°<br>-130°<br>-130°<br>-130°<br>-130°<br>-120°<br>-120°<br>-120°<br>-120°<br>-120°<br>-120°<br>-120°<br>-50°<br>-60° | rection<br>True<br>355°<br>345°<br>345°<br>345°<br>210°<br>210°<br>210°<br>210°<br>275°<br>275°<br>275°<br>285°<br>285°<br>285°<br>285°<br>285°<br>285°<br>285°<br>355°<br>345° | Line<br>Tension<br>126.9<br>111.4<br>127.1<br>109.5<br>129.2<br>26.5<br>26.7<br>25.2<br>25.3<br>82.9<br>84.6<br>63.4<br>121.8<br>113.2<br>132.2<br>66.0<br>45.3<br>45.5<br>125.4<br>1.0<br>109.6 | Percent<br>Strength<br>36%<br>39%<br>33%<br>39%<br>8%<br>8%<br>8%<br>25%<br>26%<br>19%<br>37%<br>35%<br>40%<br>20%<br>14%<br>14%<br>38%<br>0%<br>33% |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fe                                                                                                                                                                                   | nder Th<br>ee<br>ff<br>gg<br>hh<br>ii<br>jj<br>kk<br>11<br>mm<br>pp<br>qq                                                                                                                           | 1rust Cor<br>193<br>175<br>115<br>107<br>100<br>106<br>116<br>123<br>135<br>96<br>92                                                                                                                          | mpression<br>2.54<br>2.34<br>2.05<br>1.92<br>2.03<br>2.19<br>2.30<br>2.50<br>1.87<br>1.80 | Pressure<br>8.8<br>8.0<br>2.6<br>2.4<br>2.2<br>2.4<br>2.6<br>2.8<br>3.0<br>2.2<br>2.1 | Flatside<br>100%<br>100%<br>100%<br>100%<br>100%<br>100%<br>100%<br>100                                                                                                                           | Cover                                                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                      |

| Hook/   | Х-     | Y-    | Other Other   | Total | %Bollard | Direction | Bollard |
|---------|--------|-------|---------------|-------|----------|-----------|---------|
| Bollard | Force  | Force | X-Load Y-Load | Force | Strength | in Plan   | Uplift  |
| А       | 113.7  | 192.1 |               | 229.2 | 57%      | 31°       | 52.1    |
| В       | 119.0  | 284.2 |               | 360   | 90%      | 23°       | 185.9   |
| С       | -84.6  | 85.9  |               | 132.2 | 66%      | -45°      | 54.1    |
| D       | -59.9  | 23.4  |               | 66.0  | 33%      | -69°      | 14.9    |
| E       | -86.8  | 19.2  |               | 90.7  | 45%      | -78°      | 18.1    |
| L       | 102.1  | 15.8  |               | 103.6 | 26%      | 81°       | 7.8     |
| М       | 195.4  | 305   |               | 365   | 91%      | 33°       | 48.5    |
| 0       | -211.9 | 275.2 |               | 348   | 87%      | -38°      | 27.8    |
|         |        |       |               |       |          |           |         |

Approximate natural periods Surge: 35 Sway: 35 Roll: 29 secs

OPTIMOOR Licence 2742 Version 60709 Tension Technology International © 28 August 2020



Arrangement for QUANTUM at Skagway Ore Dock

Vessel Data for QUANTUM (file C:\Users\pyoung\KPFF, Inc\KPFF SPRC 2021 Projects - Documents\10092100135 Skagway Ore Peninsula Multi-Use Dock\2.15 Engineering\working\PEY\Optimoor\QoS-Port-Updated-22-06-09\QUANTUM-corrected-flat length fixed.vsl) Units in ft, inches, & kips Longitudinal datum at Midship LBP:1050.2 Breadth: 135.8 Depth: 68.9 Port Target: 70.0 fwd from midship -67.9 from CL and Stbd Target: 250.8 fwd from midship 67.9 from CL and End-on projected windage area: 19377 above deck level Side projected windage area:118500 above deck level Fendering possible from: 0.364 LBP aft of midship to: 0.272 LBP fwd of midship Current drag data based on: Cruise Ship (shallow water) Wind drag data based on: Cruise Ship Breadth: 135.8 3.3 above deck 3.3 above deck wind drag data based on: Cruise Ship Wave motion data based on: User specified circular motion Radius of maximum wave-induced motion: 0.30 significant wave height Radius of maximum swell-induced motion: 0.50 significant swell height

Flatside Contour Longitudinal datum at Midship X-dist -382.2 275.4 286.0 Depth 64.7 64.7 46.7

| Line Fair-               | Fair-  | Ht on | Dist to        | Brake | Pre-     | Line               |      | Tail Segment-1    |
|--------------------------|--------|-------|----------------|-------|----------|--------------------|------|-------------------|
| No. Lead X               | Lead Y | Deck  | Winch          | Limit | Tension  | Size-Typ           | e-BL | Lgth-Size-Type-BL |
| 1 -558.2                 | -2.0   | -19.0 | 21.2           | 258   | 18       | 5.4 dm             | 328  |                   |
| 2 - 558.2                | 2.0    | -19.0 | 21.2           | 200   | 18       | 5.4 0m<br>5.4 dm   | 328  |                   |
| 5 -550.0<br>4 -556 6     | -25.0  | -19.0 | 20.5           | 250   | 18       | 5.4 UIII<br>5.4 dm | 328  |                   |
| 5 -555 5                 | -29.0  | -19.0 | 20.3           | 258   | 18       | 5 4 dm             | 328  |                   |
| 6 -555.5                 | 29.0   | -19.0 | 19.2           | 258   | 18       | 5.4 dm             | 328  |                   |
| 7 -527.7                 | -63.6  | -19.0 | 104.5          | 258   | 18       | 5.4 dm             | 328  |                   |
| 8 -527.7                 | 63.6   | -19.0 | 25.5           | 258   | 18       | 5.4 dm             | 328  |                   |
| 9 -522.0                 | -66.0  | -19.0 | 23.8           | 258   | 18       | 5.4 dm             | 328  |                   |
| 10 -522.0                | 66.0   | -19.0 | 25.5           | 258   | 18       | 5.4 dm             | 328  |                   |
| 11 -512.8                | -67.0  | -19.0 | 22.8           | 258   | 18       | 5.4 dm             | 328  |                   |
| 12 - 512.8<br>13 - 508 5 | 67.0   | -19.0 | 110.3<br>110.7 | 250   | 18       | 5.4 dm<br>5.4 dm   | 328  |                   |
| 13 - 508.5<br>14 - 508.5 | 67.0   | -19.0 | 110.7          | 258   | 18       | 5.4 dm             | 328  |                   |
| 15 537.0                 | -6.6   | 3.0   | 17.4           | 258   | 18       | 5.4 dm             | 328  |                   |
| 16 537.0                 | 6.6    | 3.0   | 17.4           | 258   | 18       | 5.4 dm             | 328  |                   |
| 17 502.7                 | -26.1  | 3.0   | 21.6           | 258   | 18       | 5.4 dm             | 328  |                   |
| 18 502.7                 | 26.1   | 3.0   | 21.6           | 258   | 18       | 5.4 dm             | 328  |                   |
| 19 502.7                 | -30.1  | 9.5   | 25.1           | 258   | 18       | 5.4 dm             | 328  |                   |
| 20 502.7                 | 30.1   | 9.5   | 25.1           | 258   | 18       | 5.4 dm             | 328  |                   |
| 21 498.5                 | -32.4  | 9.5   | 27.4           | 200   | 10       | 5.4 0m<br>5.4 dm   | 328  |                   |
| 22 490.3                 | -34 3  | 3.0   | 27.4           | 258   | 18       | 5.4 dm             | 320  |                   |
| 24 487 2                 | 34.3   | 3 0   | 26.2           | 258   | 18       | 5 4 dm             | 328  |                   |
| 25 483.4                 | -34.8  | 3.0   | 29.5           | 258   | 18       | 5.4 dm             | 328  |                   |
| 26 483.4                 | 34.9   | 3.0   | 29.5           | 258   | 18       | 5.4 dm             | 328  |                   |
| 27 437.3                 | -51.7  | 3.0   | 63.7           | 258   | 18       | 5.4 dm             | 328  |                   |
| 28 437.3                 | 51.7   | 3.0   | 63.7           | 258   | 18       | 5.4 dm             | 328  |                   |
| 29 426.4                 | -54.3  | 3.0   | 72.3           | 258   | 18       | 5.4 dm             | 328  |                   |
| 30 426.4                 | 54.3   | 3.0   | /2.3           | 258   | 18       | 5.4 dm             | 328  |                   |
| 3⊥ 498.3<br>32 /08 ⊑     | _27.4  | 3.0   | 23.9           | 258   | 18<br>18 | 5.4 Um<br>5.4 dm   | 328  |                   |
| 32 - 558 1               | -6.0   | -19 0 | 10 0           | 230   | 0_0      | 5.4 dm             | 328  |                   |
| 34 -558.1                | 6.0    | -19.0 | 10.0           |       | ŏ.ŏ      | 5.4 dm             | 328  |                   |
|                          |        |       |                |       |          |                    |      |                   |

Codes for Types of Line: dm: dynamax HMPE 12-strand (broken-in)

## Berth Data for Skagway Ore Dock

(file C:\Users\pyoung\KPFF, Inc\KPFF SPRC 2021 Projects - Documents\10092100135 Skagway Ore Peninsula Multi-Use Dock\2.15 Engineering\Working\PEY\Optimoor\QoS-Port-Updated-22-06-09\berth-4-2-19.bth) Units in ft & kips

| Left to Right of Screen Site Plan Points:<br>width of Channel (for Current):<br>Pier Height (Fixed) above Datum:<br>Seabed Depth in way of Ship below Datum: |   | 45°<br>3281<br>14.0<br>65.6 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------|
| Permissible Surge Excursion FWd/ATT:                                                                                                                         | ± | 3.00                        |
| Permissible Sway Excursion Port/Stbd:                                                                                                                        | ± | 3.00                        |
| Permissible Vertical Movement:                                                                                                                               | ± | 3.00                        |
| Dist of Berth Target to Right of Origin:                                                                                                                     |   | 0.0                         |
| Wind Speed Specified at Height:                                                                                                                              |   | 32.8                        |
| Current Specified at Depth:                                                                                                                                  |   | 0.0                         |

| Hook/   | X-Dist    | Dist to     | Ht above | Allowable |
|---------|-----------|-------------|----------|-----------|
| Bollard | to Origin | Fender Line | Pier     | Load      |
| А       | -748.8    | 70.0        | 12.0     | 400       |
| В       | -669.0    | 22.0        | 12.0     | 400       |
| С       | -574.9    | 22.0        | 12.0     | 200       |
| D       | -483.2    | 22.0        | 12.0     | 200       |
| Е       | -403.5    | 22.0        | 12.0     | 200       |
| F       | -329.7    | 25.0        | 12.0     | 200       |
| G       | -303.6    | 17.0        | 2.0      | 200       |
| н       | -170.8    | 17.0        | 2.0      | 200       |
| I       | 51.3      | 17.0        | 2.0      | 200       |
| J       | 184.5     | 17.0        | 2.0      | 200       |
| L       | 235.3     | 20.0        | 15.0     | 400       |
| М       | 370.0     | 20.0        | 15.0     | 400       |
| 0       | 495.0     | 20.0        | 15.0     | 400       |

| Fende                         | r X-                                                                                                            | Dist                                                                                                            | Ht                   | above                                                                      | Wi                                                                                                     | dth                                                              | Face                                                                                                      | Contac                                                                                                                         | t           |             |            |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------|
| aabcd<br>defghijjkl<br>mnoppq | to<br>-75<br>-66<br>-57<br>-48<br>-40<br>-32<br>-26<br>-21<br>-3<br>2<br>9<br>14<br>23<br>43<br>52<br>-14<br>-9 | Origin<br>0.5<br>9.4<br>5.4<br>3.5<br>9.7<br>7.7<br>7.2<br>1.7<br>0.9<br>4.0<br>4.0<br>1.6<br>5.6<br>2.7<br>0.9 |                      | atum<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0<br>3.0 | A l ong<br>4<br>4<br>4<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | Side<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | Are<br>48<br>48<br>48<br>48<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98<br>98 | a (ft <sup>2</sup><br>.4<br>.4<br>.4<br>.4<br>.4<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0 | )           |             |            |
| -ende<br>aa                   | r Load<br>6<br>0.10                                                                                             | -Compr<br>12<br>0.20                                                                                            | ession<br>30<br>0.50 | Data<br>36<br>0.60                                                         | 48<br>0.80                                                                                             | 63<br>1.00                                                       | 78<br>1.20                                                                                                | 101<br>1.50                                                                                                                    | 144<br>2.00 | 199<br>2.60 | kips<br>ft |
| bb                            | 6                                                                                                               | 12                                                                                                              | 30                   | 36                                                                         | 48                                                                                                     | 63                                                               | 78                                                                                                        | 101                                                                                                                            | 144         | 199         | kips       |
|                               | 0.10                                                                                                            | 0.20                                                                                                            | 0.50                 | 0.60                                                                       | 0.80                                                                                                   | 1.00                                                             | 1.20                                                                                                      | 1.50                                                                                                                           | 2.00        | 2.60        | ft         |
| сс                            | 6                                                                                                               | 12                                                                                                              | 30                   | 36                                                                         | 48                                                                                                     | 63                                                               | 78                                                                                                        | 101                                                                                                                            | 144         | 199         | kips       |
|                               | 0.10                                                                                                            | 0.20                                                                                                            | 0.50                 | 0.60                                                                       | 0.80                                                                                                   | 1.00                                                             | 1.20                                                                                                      | 1.50                                                                                                                           | 2.00        | 2.60        | ft         |
| dd                            | 6                                                                                                               | 12                                                                                                              | 30                   | 36                                                                         | 48                                                                                                     | 63                                                               | 78                                                                                                        | 101                                                                                                                            | 144         | 199         | kips       |
|                               | 0.10                                                                                                            | 0.20                                                                                                            | 0.50                 | 0.60                                                                       | 0.80                                                                                                   | 1.00                                                             | 1.20                                                                                                      | 1.50                                                                                                                           | 2.00        | 2.60        | ft         |
| ee                            | 6                                                                                                               | 12                                                                                                              | 30                   | 36                                                                         | 48                                                                                                     | 63                                                               | 78                                                                                                        | 101                                                                                                                            | 144         | 199         | kips       |
|                               | 0.10                                                                                                            | 0.20                                                                                                            | 0.50                 | 0.60                                                                       | 0.80                                                                                                   | 1.00                                                             | 1.20                                                                                                      | 1.50                                                                                                                           | 2.00        | 2.60        | ft         |
| ff                            | 6<br>0.10                                                                                                       | 12<br>0.20                                                                                                      | 30<br>0.50           | 36<br>0.60                                                                 | 48<br>0.80                                                                                             | 63<br>1.00                                                       | 78<br>1.20                                                                                                | $\begin{smallmatrix}&101\\1.50\end{smallmatrix}$                                                                               | 144<br>2.00 | 199<br>2.60 | kips<br>ft |
| gg                            | 18                                                                                                              | 38                                                                                                              | 58                   | 78                                                                         | 100                                                                                                    | 126                                                              | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                               | 0.38                                                                                                            | 0.80                                                                                                            | 1.19                 | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                             | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| hh                            | 18                                                                                                              | 38                                                                                                              | 58                   | 78                                                                         | 100                                                                                                    | 126                                                              | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                               | 0.38                                                                                                            | 0.80                                                                                                            | 1.19                 | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                             | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| ii                            | 18                                                                                                              | 38                                                                                                              | 58                   | 78                                                                         | 100                                                                                                    | 126                                                              | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                               | 0.38                                                                                                            | 0.80                                                                                                            | 1.19                 | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                             | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| jj                            | 18                                                                                                              | 38                                                                                                              | 58                   | 78                                                                         | 100                                                                                                    | 126                                                              | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                               | 0.38                                                                                                            | 0.80                                                                                                            | 1.19                 | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                             | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| kk                            | 18                                                                                                              | 38                                                                                                              | 58                   | 78                                                                         | 100                                                                                                    | 126                                                              | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                               | 0.38                                                                                                            | 0.80                                                                                                            | 1.19                 | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                             | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| 11                            | 18                                                                                                              | 38                                                                                                              | 58                   | 78                                                                         | 100                                                                                                    | 126                                                              | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                               | 0.38                                                                                                            | 0.80                                                                                                            | 1.19                 | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                             | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| mm                            | 18                                                                                                              | 38                                                                                                              | 58                   | 78                                                                         | 100                                                                                                    | 126                                                              | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                               | 0.38                                                                                                            | 0.80                                                                                                            | 1.19                 | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                             | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| nn                            | 18                                                                                                              | 38                                                                                                              | 58                   | 78                                                                         | 100                                                                                                    | 126                                                              | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                               | 0.38                                                                                                            | 0.80                                                                                                            | 1.19                 | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                             | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| 00                            | 18                                                                                                              | 38                                                                                                              | 58                   | 78                                                                         | 100                                                                                                    | 126                                                              | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                               | 0.38                                                                                                            | 0.80                                                                                                            | 1.19                 | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                             | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |
| рр                            | 18                                                                                                              | 38                                                                                                              | 58                   | 78                                                                         | 100                                                                                                    | 126                                                              | 152                                                                                                       | 186                                                                                                                            | 221         | 257         | kips       |
|                               | 0.38                                                                                                            | 0.80                                                                                                            | 1.19                 | 1.56                                                                       | 1.93                                                                                                   | 2.35                                                             | 2.75                                                                                                      | 3.24                                                                                                                           | 3.73        | 4.19        | ft         |

| qq | 18   | 38   | 58   | 78   | 100  | 126  | 152  | 186  | 221  | 257 kips |
|----|------|------|------|------|------|------|------|------|------|----------|
|    | 0.38 | 0.80 | 1.19 | 1.56 | 1.93 | 2.35 | 2.75 | 3.24 | 3.73 | 4.19 ft  |

#### Static Mooring Response for QUANTUM at Skagway Ore Dock

(file C:\Users\pyoung\KPFF, Inc\KPFF SPRC 2021 Projects - Documents\10092100135 Skagway Ore Peninsula Multi-Use Dock\2.15 Engineering\Working\PEY\Optimoor\QoS-Port-Updated-22-06-09\mooring analysis-4-2-19-updated.opt) Units in ft & kips

Remarks:

Static Analysis for Time: 1537 Jan 09 2019 (initialised at 1537 Jan 09 2019) Water Level: 16.00 above Datum (initialised at this water level) Draft: 26.20 (initialised at this draft)) Trim: 0.00 (initialised at this trim) Bottom Clearance: 55.4 Fwd Offset of Vessel Target: -18.0 from Berth Target Vessel Port Target: 48.0 above Pier Wind Speed: 40 knots Wind Direction from: All°

Total End-on Windage Area: 25176 Total Side Windage Area:163344

|                    | Longitudinal | Transverse Y | 'aw Moment/LBP |           |
|--------------------|--------------|--------------|----------------|-----------|
| Movement of Vessel | 0.49 (fwd)   | 2.36 (inw)   | 0.2° (port)    | 0.00 (up) |
| at its Port Target | -0.33 (aft)  | -0.64 (out)  | -0.1° (stbd)   | 0.00 (up) |

| Line to<br>Bollard<br>1-A<br>2-B<br>3-A<br>4-B<br>5-A<br>6-B<br>8-C<br>10-C<br>12-D<br>14-E<br>15-O<br>16-O<br>18-O<br>22-M<br>24-M<br>26-M<br>28-L<br>30-L<br>31-O<br>33-A<br>34-B | Pull<br>-in<br>0.68<br>0.59<br>0.74<br>0.53<br>0.74<br>0.52<br>0.35<br>0.53<br>0.53<br>0.64<br>0.58<br>0.48<br>0.48<br>0.48<br>0.49<br>0.47<br>0.46<br>0.48<br>0.32<br>0.38 | Tot.Lin<br>Lengtl<br>194.4<br>112.2<br>213.3<br>89.0<br>217.2<br>85.8<br>75.2<br>69.3<br>230.1<br>304.4<br>127.3<br>116.3<br>128.0<br>106.7<br>95.6<br>96.9<br>187.6<br>185.5<br>132.8<br>186.9<br>97.4 | ne In-Line<br>n ±Motion                                                                            | Winch<br>Slip<br>0.6                                                                   | Worst Dir<br>to Screen<br>-130°<br>-130°<br>-130°<br>-130°<br>-130°<br>-130°<br>-120°<br>-120°<br>-120°<br>-120°<br>-120°<br>-50°<br>-50°<br>-50°<br>-60°<br>-60°<br>-60°<br>160°<br>-50°<br>-50°<br>-130°<br>-130° | ection<br>True<br>275°<br>275°<br>275°<br>275°<br>275°<br>285°<br>285°<br>285°<br>295°<br>355°<br>355°<br>345°<br>345°<br>345°<br>345°<br>345°<br>34 | Line<br>Tension<br>50.6<br>90.0<br>49.3<br>105.0<br>48.9<br>106.6<br>91.2<br>99.3<br>30.2<br>25.8<br>118.1<br>122.8<br>83.7<br>110.5<br>132.1<br>132.4<br>38.8<br>39.0<br>78.5<br>1.0<br>80.4 | Percent<br>Strength<br>15%<br>27%<br>15%<br>32%<br>28%<br>30%<br>9%<br>8%<br>36%<br>37%<br>26%<br>34%<br>40%<br>12%<br>12%<br>12%<br>24%<br>0%<br>25% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fen<br>d<br>e<br>f<br>j<br>k<br>i<br>j<br>k<br>l<br>g<br>d                                                                                                                          | der Th<br>d<br>e<br>f<br>g<br>h<br>i<br>j<br>k<br>l<br>p<br>q                                                                                                               | 110<br>151<br>140<br>95<br>92<br>124<br>134<br>149<br>160<br>103<br>113                                                                                                                                 | ompression<br>1.61<br>2.07<br>1.95<br>1.85<br>1.79<br>2.32<br>2.48<br>2.71<br>2.87<br>1.98<br>2.14 | Pressure<br>10.0<br>6.9<br>6.4<br>2.1<br>2.1<br>2.8<br>3.0<br>3.4<br>3.6<br>2.3<br>2.5 | Flatside<br>0%<br>100%<br>100%<br>100%<br>100%<br>100%<br>100%<br>100%                                                                                                                                              | Cover                                                                                                                                                |                                                                                                                                                                                               |                                                                                                                                                       |

| Hook/   | Х-     | Y-    | Other Other   | Total | %Bollard | Direction | Bollard |
|---------|--------|-------|---------------|-------|----------|-----------|---------|
| Bollard | Force  | Force | X-Load Y-Load | Force | Strength | in Plan   | Uplift  |
| А       | 82.8   | 124.4 |               | 149.8 | 37%      | 34°       | 9.6     |
| В       | 119.1  | 357   |               | 381   | 95%      | 18°       | 59.5    |
| С       | -152.7 | 102.8 |               | 190.4 | 95%      | -56°      | 48.5    |
| D       | -29.5  | 5.8   |               | 30.2  | 15%      | -79°      | 3.0     |
| E       | -25.6  | 3.0   |               | 25.8  | 13%      | -83°      | 1.6     |
| F       |        |       |               |       |          |           |         |
| G       |        |       |               |       |          |           |         |
| Н       |        |       |               |       |          |           |         |
| I       |        |       |               |       |          |           |         |
| J       |        |       |               |       |          |           |         |
| L       | 70.9   | 23.2  |               | 77.5  | 19%      | 73°       | 22.1    |
| М       | 159.2  | 283.7 |               | 374   | 93%      | 29°       | 184.8   |
| 0       | -228.2 | 294.9 |               | 394   | 98%      | -38°      | 128.5   |
|         |        |       |               |       |          |           |         |

Approximate natural periods Surge: 35 Sway: 32 Roll: 29 secs

OPTIMOOR Licence 2742 Version 60709 Tension Technology International © 28 August 2020

Appendix D – Preliminary Geotechnical Recommendations for Skagway Ore Peninsula Dock and Transfer Bridge Skagway, Alaska prepared by Hart Crowser



HART CROWSER A DIVISION OF HALEY & ALDRICH 3131 Elliott Avenue Suite 600 Seattle, WA 98121 206.324.9530

MEMORANDUM

8 March 2022 File No. 203404-000

TO

| : | KPFF Consulting Engineers                    |  |
|---|----------------------------------------------|--|
|   | Bob Riley, P.E., S.E., and Ed Debroeck, P.E. |  |
|   |                                              |  |

FROM: Hart Crowser, a division of Haley & Aldrich Garry Horvitz, P.E., L.E.G., Brice Exley, P.E., and Jeff Bruce, P.E.

Subject: Preliminary Geotechnical Recommendations for Skagway Ore Peninsula Dock and Transfer Bridge Skagway, Alaska

GARRY E. HOP AFI C552 PROFESSION 2022

This memorandum presents a summary of Hart Crowser's, a division of Haley & Aldrich (Hart Crowser's), geotechnical recommendations associated with the alternatives analysis of the Ore Peninsula Dock and Transfer Bridge, in Skagway, Alaska. The recommendations are based on the project development information presented in the Port of Skagway's Request for Proposal, information provided by KPFF Consulting Engineers (KPFF), as well as our previous exploration, testing, and analytical work completed for the Municipality under contract to KPFF. We completed this work in accordance with generally accepted geotechnical engineering practices for the nature and conditions of the work completed in the same or similar localities, at the time the work was performed. We make no other warranty, express or implied.

#### **Project Understanding**

This work is intended to assist KPFF in the geotechnical aspects of the alternatives assessment for the Port of Skagway Ore Peninsula Dock and adjacent waterfront structures. We understand that the proposed construction for the current assessment includes a new Roll-on/Roll-off (Ro-Ro) dock and associated ramp near the north end of the peninsula, as well as a new shared-use T-shaped ore dock (T-dock) near the south end of the peninsula. The T-dock will be designed as either a concrete or steel dock bearing on open ended steel pipe piles. Both alternatives will require dredging to allow for proper berthing of the proposed cruise ships.

The location of the site and historical soil explorations are shown on Figure 1. Historical soil exploration logs are in Attachment 1 and the results of historical geotechnical laboratory testing are in Attachment 2. The elevation datum used throughout this report is the mean lower low water datum (MLLW), unless otherwise noted.

#### **SOIL CONDITIONS**

Our understanding of the subsurface conditions in the Municipality of Skagway is based on ten historical mud rotary borings performed by Hart Crowser; on results of both historical laboratory tests of soil samples, and geophysical testing on the peninsula adjacent to the proposed ore dock improvements. Figure 1 shows the location of historical explorations. Details of the conditions found at the boring locations are shown on the logs in Attachment 1 and lab results in Attachment 2. The results of geophysical testing are shared in Attachment 3.

Our understanding of the subsurface soil conditions is based on explorations at discrete locations at the site. Soil properties inferred from the field and laboratory tests formed the basis for developing the geotechnical recommendations contained in this memorandum. Soil conditions may vary in the areas between the explorations, and the nature and extent of the variations may not be evident until construction. If variations appear, it may be necessary to reevaluate the recommendations in this memorandum.

The soil conditions can be generalized as follows:

- the ore terminal peninsula contains fill material for consisting of sandy gravel to gravelly sand; and
- the harbor contains native material consisting of gravelly sand to sandy gravel with discrete layers of silt and sandy silt.

Surficial geologic maps of the area identify the soils in the harbor as beach and alluvial fan deposits, which is consistent with our observations. These materials are typically considered young (Holocene age) deposits, which tend to be susceptible to liquefaction.

#### GROUNDWATER

Groundwater at the site is influenced by tidal fluctuations in Taiya Inlet. We did not observe the groundwater table in the upland soil borings because of the drilling method that was used, though inferences are usually made during drilling to the level of the groundwater table. At the time of this memorandum, we have assumed the groundwater level within the peninsula to be influenced by the tide cycle of the adjacent Chilkoot Inlet. Regarding a design groundwater elevation our analyses assumed the following:

- Global stability and lateral earth pressure analyses assumed a tidal lag based on mean high water (MHW) within the peninsula and mean sea level (MSL) in the Inlet.
- Liquefaction and lateral spreading analysis assumed a groundwater elevation within the peninsula equal to the average of MSL and MHW.



#### **SEISMIC SETTING**

The site is in a seismically active area. Southeastern Alaska has several major faults, including the Queen Charlotte, Fairweather, and Chatham Strait Faults. The eastern ends of the Denali and Transition Faults are within the region as well. Minor faults in the region include the Clarence Strait and the Peril Strait Faults.

The major faults in general are a result of the Pacific Plate boundary interacting with the North American Plate. The Queen Charlotte and Fairweather Faults are right lateral strike-slip faults and are similar in function to the San Andreas Fault. These faults have produced several earthquakes in excess of magnitude 7 since 1900, including the Lituya Bay earthquake. Few earthquakes are directly related to the large Chatham Strait Fault, although a moderately sized earthquake occurred nearby in 1987. The Chatham Strait Fault is the closest major fault to Skagway and runs along the Taiya Inlet. The Denali and Transition Faults are northwest of Skagway. The Transition Fault likely intersects with the Queen Charlotte-Fairweather Fault system, while the Denali Fault likely intersects the Chatham Strait Fault (Alaska Earthquake Center 2015 and 2018).

The U.S. Geological Survey (USGS) deaggregation tool (USGS 2008a) identifies shallow random earthquakes with magnitudes between 5 and 7.3 as the primary sources of peak ground acceleration (PGA), with an average distance from Skagway of approximately 7 miles. The Denali Fault contributes approximately 18 percent of the hazard from a distance of about 20 miles from Skagway, with a mean magnitude of approximately 7.9. As the period of interest increases up to 1.0 second, the Transition and Denali Faults contribute a higher portion of the seismic hazard, at a larger average distance, with each producing mean magnitudes of approximately 7.8 and 8.2, respectively.

There has not been an earthquake comparable to the risk-targeted maximum considered earthquake ( $MCE_R$ ) design-level earthquake within a 50-mile radius of Skagway in the last 100 years (COSMOS Virtual Data Center). Recent regional earthquakes have been either too small or too far away to cause significant damage or liquefaction in Skagway.

#### **SEISMIC BASIS OF DESIGN**

We developed design response spectra at the ground surface using simplified code-based methods. We referred to the 2018 International Building Code (IBC) and to American Society of Civil Engineers (ASCE) 61-14, Seismic Design of Piers and Wharves, as appropriate.

The basis of design for the 2018 IBC is two-thirds of the hazard associated with the MCE<sub>R</sub>. The MCE<sub>R</sub> has a 2 percent probability of exceedance in 50 years, which corresponds with a return period of 2,475 years.

#### **DESIGN RESPONSE SPECTRA AND PGA**

We determined the site class in accordance with the 2018 IBC, based on standard penetration test (SPT) data collected from our explorations at the project site. The site contains liquefiable soil, which requires a classification of Site Class F. Neglecting liquefaction susceptibility, the site would be categorized as a Site



Class D site. The code requires a site-specific analysis for Site Class F if the period of the structure is greater than 0.5 second.

We obtained the seismic hazard parameters from the ASCE 7-16 Seismic Design Web Service for the site location at latitude 59.450 and longitude -135.326. Code-based design response spectra and seismic design parameters for the MCE<sub>R</sub> are provided in Table 1 fort. Table 1 shows spectral accelerations at periods of 0.2 and 1 second (S<sub>S</sub> and S<sub>1</sub>, respectively) for the MCE<sub>R</sub>, with the seismic coefficients for adjustment to the MCE. These spectral accelerations, along with the site classification, may be used to develop a code-based response spectrum.

| Table 1                                                            |            |  |  |  |  |
|--------------------------------------------------------------------|------------|--|--|--|--|
| Parameter                                                          | Value      |  |  |  |  |
| Latitude                                                           | 59.450     |  |  |  |  |
| Longitude                                                          | -135.326   |  |  |  |  |
| Site class                                                         | D          |  |  |  |  |
| Risk category                                                      | I, II, III |  |  |  |  |
| Spectral response acceleration at short periods, Ss                | 0.781 g    |  |  |  |  |
| Spectral response acceleration at 1-second periods, S <sub>1</sub> | 0.384 g    |  |  |  |  |
| Mapped MCE geometric mean peak ground acceleration, PGA            | 0.314 g    |  |  |  |  |
| Seismic coefficient, Fa                                            | 1.188      |  |  |  |  |
| Seismic coefficient, $F_v$                                         | 1.633      |  |  |  |  |
| Seismic coefficient, F <sub>PGA</sub>                              | 1.286      |  |  |  |  |

#### LIQUEFACTION POTENTIAL

Liquefaction is caused by a rapid increase in pore water pressure that reduces the effective stress between soil particles, resulting in the sudden loss of shear strength in the soil. Granular soils that rely on interparticle friction for strength are susceptible to liquefaction until the excess pore pressures can dissipate. Sand boils and flows at the ground surface after an earthquake result from excess pore pressure dissipating upward, carrying soil particles with the draining water. In general, loose, saturated sandy soils with low silt and clay contents are the most susceptible to liquefaction. Silty soils with low plasticity are moderately susceptible to liquefaction under relatively higher levels of ground shaking. For any soil type, the soil must be saturated for liquefaction to occur.

We used empirical methods to estimate liquefaction potential using the SPT data obtained at the site. Procedures after Idriss and Boulanger (2008) incorporating the SPT data were used for the liquefaction analysis. For the MCE hazard level, we used an earthquake magnitude of 6.6 and a PGA 0.404 g in our analysis. These values are derived from the 2007 USGS mapped values of Alaska for the MCE event. These accelerations correspond to Site Class D, as appropriate for this site under non-liquefied conditions. According to our analysis, the site is intermittently susceptible to liquefaction in soil units below the



groundwater table in some areas. While the entire project area holds liquefaction potential, in general, it appears the southern portion of the site is the most susceptible.

To further assess the impact of gravels on the liquefaction estimates, we contracted a geophysical testing service to perform Refraction Micrometer (ReMi) and Multichannel Analysis of Surface Waves (MASW) surveys. These surveys provided shear wave data that we used to better estimate both the stiffness and liquefaction susceptibility of the native soils. We used methods for the liquefaction analysis detailed by Andrus and Stokoe (2004) for the MCE event, as described above. Per this updated analysis, the peninsula fill soils are liquefiable beneath the groundwater table. The underlying native sands and gravels displayed marginal liquefaction susceptibility based on SPT blow counts but did not show liquefaction susceptibility based on shear wave data. We consider this unit to generally be not susceptible to post-seismic residual strength loss for post-seismic slope stability.

#### SEISMICALLY INDUCED SLOPE DEFORMATIONS

If sloping ground or soil near a slope liquefies, large lateral deformations of the soil, called lateral spreading, can occur. Additionally, strong inertial shaking of slope material can result in failure and, thus, movement of the slope soils. The seismic hazard and liquefaction susceptibility for the soils within the peninsula make both seismically induced slope failure and liquefaction induced lateral spreading potential hazards at the site. The slope stability section of this memorandum addresses our analysis on conclusions regarding these topics.

#### **Geotechnical Engineering Conclusions and Recommendations**

This section presents our preliminary conclusions and recommendations for the geotechnical aspects of design and construction on the project site. We developed our recommendations based on our current understanding of the project and the subsurface conditions encountered by our explorations. If the nature or location of the development is different than we assumed, we should be notified so we can change or confirm our recommendations.

#### **VERTICAL PILE CAPACITY**

Vertical compressive loads can be resisted by friction along the pile sides and by end bearing at the tip. Because we did not encounter a consistent very dense bearing layer, required pile lengths can only be approximated based on field boring logs at discrete locations. Actual pile lengths needed will depend on driving resistance and other factors, and may need to be adjusted in the field after test piles are installed.

Considering the soil conditions at the project site, we determined pile capacities using effective stress analysis methods. We used the software, APILE, to model the vertical resistance of 24-, 30-, 36-, 42- and 48-inch open-ended pipe piles, basing the subsurface profile on the results of boring GO2 and GO1. We used existing pile installation logs to calibrate these recommendations using the Danish pile driving formula. The approximate location of these existing piles is shown on Figure 1. We used a compressive factor of safety of 2.0 for static conditions. To use a factor of safety of 2.0, the capacities must be verified in the field by a load test, as defined by the IBC, which allows Pile Driving Analyzer (PDA)/Case Pile Wave



Analysis Program (CAPWAP) to be the load test method. For open-ended piles, plugging was assumed to occur. If open-ended pipe piles are used and tip resistance is critical, a load test such as Statnamic loading may be recommended as part of final design, if axial capacity becomes the critical factor. This test is recommended to reduce the risk of dislodging the soil plug during testing.

The estimated resistance profiles are in Figures 2 and 3. These resistance charts apply to offshore RoRo Dock and Float Guide piles only.

#### **POST-LIQUEFACTION DOWNDRAG**

During and after liquefaction, as pore water pressures dissipate, liquefied soil and overlying non-liquefied soil will settle relative to piles tipped into the bearing layer. The pile capacity recommendations, above, do not include the effects of downdrag loads. Our liquefaction analysis indicated the presence of a non-liquefiable crust from the ground surface underlain by a liquefiable layer from elevation 9 feet to elevation –9 feet. The geometry of these layers vary as the slope descends away from the shoreline. As a result, the downdrag loads will vary based on the pile location, relative to the shoreline. Table 2, below, presents our recommendations for downdrag load presented as a function of distance from the crest of the slope adjacent to the shoreline and pile diameter. We present these values as preliminary recommendations based on historical analysis and are subject to change based on the final design direction.

| Table 2<br>Downdrag Load Equations                  |                           |  |  |  |  |
|-----------------------------------------------------|---------------------------|--|--|--|--|
| Approximate Distance from<br>Crest of Slope in Feet | Downdrag Load in ksf      |  |  |  |  |
| 0 to 60                                             | 0.53*π*(60-x)*D+10.8* π*D |  |  |  |  |
| 60 to 125                                           | 0.27*(125-x)* π*D         |  |  |  |  |

Where:

D = Pile diameter in feet,

*x* = Distance from crest of slope towards the water in feet.

#### LATERAL PILE RESISTANCE AND LOADING

Lateral resistance and deflections of vertical pile foundations are often governed by the lateral capacity of near-surface soils and the strength of the pile itself. The design lateral capacity of the vertical piles will depend, to a large extent, on the allowable lateral deflections of the piles. However, if the ground is not improved, under severe seismic loading, the piles will have minimal lateral resistance in the zone of liquefaction. Input parameters for lateral pile analysis in the program LPILE are provided in Table 3. These input parameters are for piles spaced farther apart than 8B, where *B* is the pile diameter.



| Table 3<br>LPILE Input Parameters                 |            |                         |                                      |                                |                      |                           |  |
|---------------------------------------------------|------------|-------------------------|--------------------------------------|--------------------------------|----------------------|---------------------------|--|
| Soil Type                                         | Soil Model | Elevation<br>Range (ft) | Effective<br>Unit<br>Weight<br>(pcf) | Friction<br>Angle<br>(degrees) | P-Y Modulus<br>(pci) | Liquefied<br>P-Multiplier |  |
| Sandy gravel to gravelly sand (above water table) | API Sand   | 30 to 9                 | 65                                   | 35                             | 132                  | 1                         |  |
| Sandy gravel to gravelly sand (below water table) | API Sand   | 9 to –9                 | 65                                   | 35                             | 80                   | 0.1                       |  |
| Gravelly sand/silty sand                          | API Sand   | Below –9                | 65                                   | 36                             | 93                   | See Note                  |  |

Notes:

1) Seismic conditions not incorporated

*pcf = pounds per cubic foot*

3) Check sensitivity to varying from 0.3 to 1.0

#### **SLOPE STABILITY**

The proposed project area sits along the east edge and north end of the peninsula, where an approximately 3H:1V slope extends down from the crest of the peninsula to about elevation –40 feet. Slide 9.020, a slope stability analysis computer program, was used to model and calculate the factors of safety for the static case and pseudostatic cases for the MCE event. Minimum factors of safety were chosen for each case based on published standards from ASCE 61-14. Table 4 below presents the minimum factors of safety used as the basis of our analysis.

| Table 4<br>Minimum Required Factors for Slope Stability |                            |  |  |  |  |
|---------------------------------------------------------|----------------------------|--|--|--|--|
| Static                                                  | Pseudostatic Non-Liquefied |  |  |  |  |
| 1.5                                                     | 1.1                        |  |  |  |  |

To model the inertial effects on the slope due to seismic shaking, a horizontal pseudostatic acceleration was applied to the model. This horizontal acceleration coefficient,  $K_h$ , was calculated from the PGA produced by the 2007 USGS design mapped values of Alaska.  $K_h$  includes a reduction factor of 0.5, allowing for 1 to 2 inches of permanent deformation, and a factor,  $\alpha$ , to account for wave scattering for slopes greater than 20 feet tall following the simplified method from NCHRP 611. We calculated a pseudo-static horizontal acceleration coefficient of 0.202g.

We analyzed the stability of the slope using non-circular search methods following the Spencer and Morgenstern-Price search methods. We ignored shallow surficial failures of the slope material when estimating the critical factor of safety. Table 5, below, presents the minimum calculated factors of safety for the five loading cases analyzed.


KPFF 8 March 2022 Page 8

| Table 5<br>Estimated Factors of Safety without Ground Improvement |                  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------|------------------|--|--|--|--|--|--|--|--|--|
| Case                                                              | Factor of Safety |  |  |  |  |  |  |  |  |  |
| Static: No Ground Improvement                                     | 1.7              |  |  |  |  |  |  |  |  |  |
| Post Seismic: Liquefied                                           | 1.0              |  |  |  |  |  |  |  |  |  |
| Pseudostatic: Non-Liquefied, No Ground Improvement                | 1.0              |  |  |  |  |  |  |  |  |  |

The results show that the slope meets the minimum required factors of safety for the static scenario. However, the slope does not meet the minimum required factors of safety under pseudostatic loading of the design event or under post-seismic liquefied strengths. To reduce the risk of significant slope failure in the seismic scenarios, ground improvement may be employed. We evaluated the stability of a conceptual 30-foot-wide by 30-foot-deep block of ground improvement with a preliminary area replacement ratio of 40 percent. Table 6 below presents the results of these updated models.

| Table 6           Estimated Factors of Safety with Ground Improvement |     |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------|-----|--|--|--|--|--|--|--|--|--|
| Case Factor of Safety                                                 |     |  |  |  |  |  |  |  |  |  |
| Post Seismic: Liquefied, With Ground Improvement                      | 1.4 |  |  |  |  |  |  |  |  |  |
| Pseudostatic: Non-Liquefied, With Ground Improvement                  | 1.1 |  |  |  |  |  |  |  |  |  |

The results estimate that the modeled ground improvement geometry and area replacement ratio results in the minimum factors of safety being met for both seismic scenarios.

The attached Figures 4 through 8, show slope stability model output for the five cases analyzed.

#### Lateral Earth Pressure Recommendations

We understand a sheet pile wall is being considered along the peninsula, to retain new backfill acting to extend the working width of the peninsula area. Based on borings GO2 and GO6, we anticipate the wall to retain fill predominately composed of medium dense to very dense sandy gravel to gravely sand, and native material consisting of lose to very dense gravely sand to sandy gravel. To assist in design of the new retaining wall to retain these soils, we present lateral earth pressure recommendations in Figures 9 through 11. These figures present lateral earth pressure recommendations for the following scenarios:

- static and pseudostatic lateral earth pressures without ground improvement;
- static and pseudostatic lateral earth pressures with ground improvement; and
- liquefied lateral earth pressures without ground improvement.

For final design we recommend placement of 18 inches of free-draining, well-graded sand and gravel (less than 3 percent fines based on 3/4-inch fraction) against backfilled walls to prevent excessive build-up of hydrostatic pressures. However, the lateral earth pressures recommended above do include consideration for a tidal lag in the between the retained backfill material and the adjacent Inlet water elevation.



KPFF 8 March 2022 Page 9

Attachments:

Figure 1 - Site and Exploration Plan

Figure 2 - Allowable Vertical Resistance for Offshore Steel Pipe Piles

Figure 3 - Nominal Unit Skin Friction for Offshore Steel Pipe Piles

Figure 4 - Static: No Ground Improvement

Figure 5 - Post-Seismic, Liquefied: No Ground Improvement

Figure 6 - Pseudostatic, Non-Liquefied: No Ground Improvement

Figure 7 - Post-Seismic, Liquefied: With Ground Improvement

Figure 8 - Pseudostatic, Non-Liquefied: With Ground Improvement

Figure 9 - Static and Pseudostatic Lateral Earth Pressure No Ground Improvement

Figure 10 - Static and Pseudostatic Lateral Earth Pressure with Ground Improvement

Figure 11 - Liquified Lateral Earth Pressure No Ground Improvement

Attachment 1 - Historic Borings Attachment 2 - Historic Lab Data Attachment 3 - Geophysical Data

\\haleyaldrich.com\share\sea\_projects\Notebooks\P203404-000\_Port\_of\_Skagway\_Ore\_Dock\Deliverables\Memos\Skagway Ore Peninsula Alternatives Analysis Geotechnical Memorandum\2022\_0308\_HCHA\_SkagwayOrePeninsulaAlternativesAnalysisGeotechMemo\_F.docx



KPFF 8 March 2022 Page 10

#### References

- 1. Alaska Earthquake Center. *Maximum Estimated Tsunami Inundation From Tectonic and Landslide Sources, Skagway, Alaska*. [1:6800]. Skagway, Alaska: Report of Investigation, 2018.
- Alaska Earthquake Center. Southeastern Alaska Seismicity, from Alaska Earthquake Center Website: http://www.aeic.alaska.edu/maps/southeast\_seismicity\_map.html. Accessed Oct. 6, 2015.
- 3. ASCE 41-17, 2017, Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Reston, Virginia.
- 4. ASCE 61-14, 2017, Seismic Design of Piers and Wharves, American Society of Civil Engineers, Reston, Virginia.
- COSMOS Virtual Data Center. Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) 1997–2007. <u>http://strongmotioncenter.org/vdc/scripts/earthquakes.plx#AK</u>. Accessed Oct. 6, 2015.
- 6. Idriss, I.M. and R.W. Boulanger. 2008. Soil Liquefaction During Earthquakes. EERI Publication.
- US Geological Survey 2008a. USGS 2008 National Seismic Hazard Mapping Project PSHA Interactive Deaggregation Web Site: <u>http://geohazards.usgs.gov/deaggint/2008/</u>. Accessed Oct. 6, 2015.
- 8. US Geological Survey 2008b. USGS National Seismic Hazard Maps, from USGS Website: http://earthquake.usgs.gov/hazards/designmaps/usdesign.php. Accessed Oct. 6, 2015.

\\haleyaldrich.com\share\sea\_projects\Notebooks\P203404-000\_Port\_of\_Skagway\_Ore\_Dock\Deliverables\Memos\Skagway Ore Peninsula Alternatives Analysis Geotechnical Memorandum\2022\_0308\_HCHA\_SkagwayOrePeninsulaAlternativesAnalysisGeotechMemo\_F.docx





#### LEGEND

 $\bullet$  $\bullet$  GEOPHYSICAL EXPLORATION

SURFACE EXPLORATION, HART CROWSER

#### NOTES

1. ALL LOCATIONS AND DIMENSIONS ARE APPROXIMATE.

2. AERIAL IMAGERY SOURCE: ESRI



120

240

SCALE IN FEET

A division of Haley & Aldrich

SKAGWAY ORE DOCK IMPROVEMENTS SKAGWAY, ALASKA

#### SITE AND EXPLORATION PLAN

MARCH 2022







| 150                             |        | Method N<br>Spence<br>GLE / Morgenst             | <mark>ame</mark><br>r<br>tern-P | Mi<br>2<br>Price 1          | in FS<br>1.0<br>1.0      |                   |              |                               |                                |                  |            |                                                             |         |                                                   |
|---------------------------------|--------|--------------------------------------------------|---------------------------------|-----------------------------|--------------------------|-------------------|--------------|-------------------------------|--------------------------------|------------------|------------|-------------------------------------------------------------|---------|---------------------------------------------------|
| - 100                           |        |                                                  |                                 |                             |                          |                   |              |                               |                                |                  |            |                                                             | 1.0     |                                                   |
| -<br>-<br>-<br>-<br>-<br>-<br>- | W<br>V |                                                  |                                 |                             | 0                        |                   |              |                               | ·                              |                  |            |                                                             |         | W                                                 |
|                                 | _      |                                                  |                                 | lick                        |                          |                   |              | Matical                       |                                |                  |            |                                                             |         |                                                   |
| -                               |        | MaterialName                                     | Color                           | Unit<br>Weight<br>(lbs/ft3) | Strength<br>Type         | Cohesion<br>(psf) | Phi<br>(deg) | Vertical<br>Strength<br>Ratio | MinimumShear<br>Strength (psf) | Water<br>Surface | Hu<br>Type | łu                                                          |         |                                                   |
|                                 | Fi     | ill - Sandy GRAVEL to<br>gravelly SAND           |                                 | 125                         | Mohr-<br>Coulomb         | 0                 | 35           |                               |                                | Water<br>Surface | Custom     | 1                                                           |         |                                                   |
| 6-                              | Fil    | ill - onshore - liquefied                        |                                 | 125                         | Vertical<br>Stress Ratio |                   |              | 0.52                          | 0                              | Water<br>Surface | Custom     | 1                                                           |         |                                                   |
| μ <u>η</u>                      | Or     | nshore - Gravely sand/<br>silty sand - liquefied |                                 | 125                         | Vertical<br>Stress Ratio |                   |              | 0.48                          | 0                              | Water            | Custom     | 0                                                           |         |                                                   |
| -                               | Of     | ffshore- Gravely sand/                           |                                 | 115                         | Vertical<br>Stross Patio |                   |              | 0.35                          | 0                              | Water            | Custom     | 1                                                           |         |                                                   |
|                                 | Gr     | ravely Sand/silty SAND                           |                                 | 130                         | Mohr-                    | 0                 | 36           |                               |                                | Water            | Custom     | 1                                                           |         |                                                   |
| -                               | - L    |                                                  | _ <b></b> ]                     | 1 1 1                       |                          |                   | · · ·        |                               |                                | _ surrace        | · · ·      | '                                                           |         |                                                   |
| <u> </u>                        |        | 100                                              |                                 |                             | 150                      |                   |              |                               | 200                            |                  | 4          | 250                                                         | 300 350 | 400 450 50                                        |
|                                 |        |                                                  |                                 |                             |                          |                   |              |                               |                                |                  |            | Ore Peninsula Dock Alternatives Analysis<br>Skagway, Alaska |         |                                                   |
|                                 |        |                                                  |                                 |                             |                          |                   |              |                               |                                |                  |            |                                                             |         | Post-Seismic, Liquefied: No Ground<br>Improvement |
|                                 |        |                                                  |                                 |                             |                          |                   |              |                               |                                |                  |            |                                                             |         | 203404-000 Scale 1:500 3/1/2022                   |
|                                 |        |                                                  |                                 |                             |                          |                   |              |                               |                                |                  |            |                                                             |         | Figure Figure                                     |
|                                 |        |                                                  |                                 |                             |                          |                   |              |                               |                                |                  |            |                                                             |         | A division of Holey & Aldrich 5                   |

|         | Me<br>GLE / Mo                   | Method Name       Min FS         Spencer       1.0         GLE / Morgenstern-Price       1.0 |                                 |                             |                   |              |                               |                                       |                  |            |     |         |                 |                                       | ► 0.202            |
|---------|----------------------------------|----------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|-------------------|--------------|-------------------------------|---------------------------------------|------------------|------------|-----|---------|-----------------|---------------------------------------|--------------------|
|         | Material<br>Name<br>Fill - Sandy | Color                                                                                        | Unit<br>Weight<br>(Ibs/<br>ft3) | Strength<br>Type            | Cohesion<br>(psf) | Phi<br>(deg) | Vertical<br>Strength<br>Ratio | Minimum<br>Shear<br>Strength<br>(psf) | Water<br>Surface | Ни<br>Туре | Hu  |         |                 |                                       |                    |
| μ-<br>- | GRAVEL to<br>gravelly SAND       |                                                                                              | 125                             | Mohr-<br>Coulomb            | 0                 | 35           |                               |                                       | Water<br>Surface | Custom     | 1   |         |                 |                                       |                    |
| -       | Fill - onshore<br>- liquefied    |                                                                                              | 125                             | Vertical<br>Stress<br>Ratio |                   |              | 0.52                          | 0                                     | Water<br>Surface | Custom     | 1   |         |                 |                                       |                    |
|         | Gravely Sand/<br>silty SAND      |                                                                                              | 130                             | Mohr-<br>Coulomb            | 0                 | 36           |                               |                                       | Water<br>Surface | Custom     | 1   |         |                 |                                       |                    |
| 100     |                                  | T 1 1                                                                                        |                                 |                             | 1                 |              |                               | 1                                     |                  | 1          | 1 1 |         |                 |                                       |                    |
| É       | 50                               |                                                                                              | 10                              | 0                           |                   | 150          | )                             |                                       | 200              |            |     | 250 300 | 350<br>Ore Peni | 400<br>nsula Dock Alternative         | 450<br>s Analysis  |
|         |                                  |                                                                                              |                                 |                             |                   |              |                               |                                       |                  |            |     |         | Skagway, Alaska |                                       |                    |
|         |                                  |                                                                                              |                                 |                             |                   |              |                               |                                       |                  |            |     |         | Pseudost        | atic, Non-Liquefied: N<br>Improvement | io Ground          |
|         |                                  |                                                                                              |                                 |                             |                   |              |                               |                                       |                  |            |     |         | 203404-000      | Scale 1:500                           | 3/1/2022<br>Figure |
|         |                                  |                                                                                              |                                 |                             |                   |              |                               |                                       |                  |            |     |         | an H/           | A division of Haley & Aldrich         | 6                  |







H<sub>WO</sub> = depth to tidal water level

 $H_{WI}$  = depth to retained groundwater table

Note: If sheetpile wall is designed to fully drain, there is no unbalanced hydrostatic force.



SKAGWAY ORE DOCK IMPROVEMENTS SKAGWAY, ALASKA

STATIC AND PSEUDOSTATIC LATERAL EARTH PRESSURE NO GROUND IMPROVEMENT

NOT TO SCALE MARCH 2022



H<sub>WO</sub> = depth to tidal water level

 $H_{WI}$  = depth to retained groundwater table

Note: If sheetpile wall is designed to fully drain, there is no unbalanced hydrostatic force.



SKAGWAY ORE DOCK IMPROVEMENTS SKAGWAY, ALASKA

STATIC AND PSEUDOSTATIC LATERAL EARTH PRESSURE WITH GROUND IMPROVEMENT

NOT TO SCALE MARCH 2022



H<sub>WO</sub> = depth to tidal water level

 $H_{WI}$  = depth to retained groundwater table

Note: If sheetpile wall is designed to fully drain, there is no unbalanced hydrostatic force.

# Liquified Lateral Earth Pressure for Sheetpile Retaining Structure and One Level of Ground Anchors



SKAGWAY ORE DOCK IMPROVEMENTS SKAGWAY, ALASKA

LIQUIFIED LATERAL EARTH PRESSURE NO GROUND IMPROVEMENT

NOT TO SCALE MARCH 2022

#### ATTACHMENT 1 Historic Borings



Location: N 2785727.3869 E 2376494.4484 Approximate Ground Surface Elevation: -11.3 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2785727.3869 E 2376494.4484 Approximate Ground Surface Elevation: -11.3 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2785727.3869 E 2376494.4484 Approximate Ground Surface Elevation: -11.3 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum:

Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual. 3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).
4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

with time.

5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2786024.1941 E 2376764.8168 Approximate Ground Surface Elevation: -8.6 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
   USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise
- USCS designations are based on visual manual classification (ASTM D 2488) unless otherwis supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2786024.1941 E 2376764.8168 Approximate Ground Surface Elevation: -8.6 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum:

Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual. 3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).
4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

with time.

5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



NEW BORING LOG 1908100-BL.GPJ HC\_CORP.GDT 4/28/15

Location: N 2786559.7346 E 2377333.8577 Approximate Ground Surface Elevation: 28.9 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum:

Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- 3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
  4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary
- with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.

HARTCROWSER 19081-00 1/15 Figure A-4 1/3

Location: N 2786559.7346 E 2377333.8577 Approximate Ground Surface Elevation: 28.9 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2786559.7346 E 2377333.8577 Approximate Ground Surface Elevation: 28.9 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwis supported by laboratory testing (ASTM D 2487).

 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2786633.7918 E 2377153.5044 Approximate Ground Surface Elevation: 30.0 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2786633.7918 E 2377153.5044 Approximate Ground Surface Elevation: 30.0 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designed in a visual manual description (ASTM D 2489) unless attemptions.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.

 HARTCROWSER

 19081-00
 1/15

 Figure A-5
 2/3

Location: N 2786633.7918 E 2377153.5044 Approximate Ground Surface Elevation: 30.0 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum:

Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual. 3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).
4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

with time.

5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.

HARTCROWSER 19081-00 1/15 Figure A-5 3/3

Location: N 2786321.3295 E 2376854.6224 Approximate Ground Surface Elevation: 29.1 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum:

Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- 3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
  4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary
- with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2786321.3295 E 2376854.6224 Approximate Ground Surface Elevation: 29.1 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum:

Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

with time.

5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.

**HARTCROWSER** 19081-00 1/15 2/3 Figure A-6

Location: N 2786321.3295 E 2376854.6224 Approximate Ground Surface Elevation: 29.1 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).

 Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2786069.2094 E 2376634.6097 Approximate Ground Surface Elevation: 29.8 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 6 inches Logged By: A. Wade Reviewed By: N. Campbell



- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2786069.2094 E 2376634.6097 Approximate Ground Surface Elevation: 29.8 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 6 inches Logged By: A. Wade Reviewed By: N. Campbell



- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2786069.2094 E 2376634.6097 Approximate Ground Surface Elevation: 29.8 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 6 inches Logged By: A. Wade Reviewed By: N. Campbell



- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
- USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2785843.2181 E 2376336.1308 Approximate Ground Surface Elevation: 28.9 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
   USCS designations are based on visual manual classification (ASTM D 2488) unless otherwised
- USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.

 HARTCROWSER

 19081-00
 1/15

 Figure A-8
 1/3

Location: N 2785843.2181 E 2376336.1308 Approximate Ground Surface Elevation: 28.9 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
   USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise
- supported by laboratory testing (ASTM D 2487).
  4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary
- with time. 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2785843.2181 E 2376336.1308 Approximate Ground Surface Elevation: 28.9 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum:

Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



- 2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual. 3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise
- supported by laboratory testing (ASTM D 2487).
  4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary
- with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2785912.9858 E 2376249.2784 Approximate Ground Surface Elevation: 28.9 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.


Location: N 2785912.9858 E 2376249.2784 Approximate Ground Surface Elevation: 28.9 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
   USCS designations are based on visual manual classification (ASTM D 2488) unless otherwised
- USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.

 HARTCROWSER

 19081-00
 1/15

 Figure A-9
 2/3

Location: N 2785912.9858 E 2376249.2784 Approximate Ground Surface Elevation: 28.9 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum:

Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual. 3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).
4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

with time.

5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2786539.2333 E 2376605.9071 Approximate Ground Surface Elevation: 30.0 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

- Soil descriptions and stratum lines are interpretive and actual changes may be gradual.
   USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise
- USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).
- 4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2786539.2333 E 2376605.9071 Approximate Ground Surface Elevation: 30.0 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum: Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual.

 USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise supported by laboratory testing (ASTM D 2487).

4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary with time.

5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



Location: N 2786539.2333 E 2376605.9071 Approximate Ground Surface Elevation: 30.0 Feet Horizontal Datum: Alaska State Plane Zone 1, NAD83, US Feet Vertical Datum:

Drill Equipment: Mobil B-59/Mud Rotary Hammer Type: SPT w/140 lb. Autohammer Hole Diameter: 5 inches Logged By: A. Wade Reviewed By: N. Campbell



1. Refer to Figure A-1 for explanation of descriptions and symbols.

2. Soil descriptions and stratum lines are interpretive and actual changes may be gradual. 3. USCS designations are based on visual manual classification (ASTM D 2488) unless otherwise

supported by laboratory testing (ASTM D 2487).
4. Groundwater level, if indicated, is at time of drilling (ATD) or for date specified. Level may vary

- with time.
- 5. \* Samples taken with 2.5" I.D. 3" O.D. Dames & Moore Sampler with 140 lb. SPT hammer and 30" drop height. Blow counts shown have been converted to SPT equivalent values.



## ATTACHMENT 2 Historic Lab Data





# Unified Soil Classification (USC) System Soil Grain Size

|     | Size of Opening In Inches |           |     |                |     |                   |     | Number of Mesh per Inch<br>(US Standard) |   |   |    |               | Grain Size in Millimetres |       |        |         |          |       |     |     |     |           |      |      |      |      |     |
|-----|---------------------------|-----------|-----|----------------|-----|-------------------|-----|------------------------------------------|---|---|----|---------------|---------------------------|-------|--------|---------|----------|-------|-----|-----|-----|-----------|------|------|------|------|-----|
| 12  | 9                         | 4 ¢       | , c | 1 - <u>-</u> C | . – | 3/4<br>5/8<br>1/2 | 3/8 | 1/4                                      | 4 |   | 10 | 20            |                           | 40    | 60     | 100     | 000      | .06   | .04 | .03 | .02 | .01       | .006 | .004 | .003 | .002 | 200 |
| Γ   |                           |           |     |                |     |                   |     |                                          |   |   |    |               |                           |       |        |         |          |       |     |     |     |           |      |      |      |      |     |
| L   |                           |           |     |                |     |                   |     |                                          |   |   |    |               |                           |       |        |         |          |       |     |     |     |           |      |      |      |      |     |
| 300 | 200                       | 100<br>80 | 60  | 40             | 30  | 20                | 10  | 9                                        | 4 | З | 2  | ← œ           | 9.                        | 4.    | εi ci  |         | 1<br>.08 | 90.   | .04 | .03 | .02 | .01<br>01 | 000  | .004 | .003 | .002 | 100 |
|     |                           |           |     |                |     |                   |     |                                          |   |   |    | Grain Si      | ze in                     | Milli | netres |         |          |       |     |     |     |           |      |      |      |      |     |
|     | COBBLES GRAVEL            |           |     |                |     |                   |     | SAND                                     |   |   |    | SILT and CLAY |                           |       |        |         |          |       |     |     |     |           |      |      |      |      |     |
|     | Coarse-Grained Soils      |           |     |                |     |                   |     |                                          |   |   |    |               |                           |       | Fi     | ne-Grai | ned S    | Soils |     |     |     |           |      |      |      |      |     |

#### **Coarse-Grained Soils**

| GW                                                  | GP              | GM                  | GM GC        |           | SP                | SM                   | S C   |  |  |
|-----------------------------------------------------|-----------------|---------------------|--------------|-----------|-------------------|----------------------|-------|--|--|
| Clean GRAV                                          | 'EL <5% fines   | GRAVEL wit          | h >12% fines | Clean SAN | D <5% fines       | SAND with >12% fines |       |  |  |
| GRA                                                 | VEL >50% coarse | fraction larger tha | n No. 4      | SAN       | D >50% coarse fra | action smaller than  | No. 4 |  |  |
| Coarse-Grained Soils >50% larger than No. 200 sieve |                 |                     |              |           |                   |                      |       |  |  |

G W and S W 
$$\left(\frac{D_{60}}{D_{10}}\right) > 4$$
 for G W & &  $1 \le \left(\frac{(D_{30})^2}{D_{10} \times D_{60}}\right) \le 3$ 

G P and S P Clean GRAVEL or SAND not meeting requirements for G W and S W

G M and S M Atterberg limits below A line with PI <4

G C and S C Atterberg limits above A Line with PI >7

\* Coarse-grained soils with percentage of fines between 5 and 12 are considered borderline cases requiring use of dual symbols.

D<sub>10</sub>, D<sub>30</sub>, and D<sub>60</sub> are the particles diameter of which 10, 30, and 60 percent, respectively, of the soil weight are finer.

#### **Fine-Grained Soils**









GRAIN SIZE 1908100-BL.GPJ HC\_CORP.GDT 4/3/1





GRAIN SIZE 1908100-BL.GPJ HC\_CORP.GDT 4/3/15





GRAIN SIZE 1908100-BL.GPJ HC\_CORP.GDT 4/3/1



# ATTACHMENT 3 Geophysical Data



### **ALASKA DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS**

### REPORT OF INVESTIGATION 2018-2 Nicolsky and others, 2018 SHEET 1 OF 3

Explanatory text accompanies map



# MAXIMUM ESTIMATED TSUNAMI INUNDATION FROM TECTONIC AND LANDSLIDE SOURCES, SKAGWAY, ALASKA

by





#### Affiliations:

<sup>1</sup> Alaska Earthquake Center, Geophysical Institute.

University of Alaska Fairbanks, PO Box 757320, Fairbanks, AK 99775-7320 <sup>2</sup> Alaska Division of Geological & Geophysical Surveys, 3354 College Road,

Fairbanks, AK 99709-3707



Base map from: Bing maps, DigitalGlobe 2017 Projection: Alaska State Plane Zone 1 (Feet) Datum: North American Datum of 1983 **Cartography by:** L. Gardine<sup>1</sup> (2018) Cartographic review by: P.E. Gallagher<sup>2</sup> (2018) Peer review by: De Anne S.P. Stevens<sup>2</sup> (2018)

Appendix E – Skagway Cruise Ship Dock Float Motions and Pile Loads prepared by Glosten

#### SKAGWAY CRUISE SHIP DOCK Float Motions and Pile Loads

| PREPARED FOR:<br>KPFF<br>Seattle, W/ | A                                                            |                          |                            | ву:<br>Kevin P. Raleigh<br>елејкее<br>снескео:                                                          |  |
|--------------------------------------|--------------------------------------------------------------|--------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|--|
| Glosten                              | 1201 WESTERI<br>SEATTLE, WAS<br>T 206.624.785<br>GLOSTEN.COM | N AVENUI<br>HINGTON<br>0 | E, SUITE 200<br>98101-2953 | Matthew A. Lankowski, PE<br>senior engineer<br>APPROVED:<br>Justin M. Morgan, PE<br>PRINCIPAL-IN-CHARGE |  |
| рос:<br>21112-000-                   | 01                                                           | rev:<br>A                | FILE:<br>21112.01          | date:<br>30 March 2022                                                                                  |  |

#### References

- 1. Pontoon Weight Take Off, KPFF, Pontoon Weight Take Off 1-25-22.xlsm, 25 January 2022.
- 2. *Skagway Ore Dock, Skagway, AK, Pontoon Layout*, Transpac, Drawing No. 18\_141\_A, Preliminary, 4 January 2022.
- 3. Pile Stiffness Tables, KPFF, OPT 1-Guide Pile Stiffness 1-20-2022.xlsx, 20 January 2022.
- 4. ACES [software], VeriTech Inc. v4.01, 2019.
- 5. WAMIT [software], WAMIT, Inc., v7.2, 2016.
- 6. Ore Dock Improvements, Skagway, Alaska, Option 1, 50' × 175' Concrete Float Plan, KPFF, Drawing No. FL1.1, 17 January 2019.
- 7. 42-inch Pile Stiffness Tables, KPFF, OPT 1-Guide Pile Stiffness\_Concrete Float 42inch Pile 2-22-2022.xlsx, 22 February 2022.
- 8. 36-inch Pile Stiffness Tables, KPFF, OPT 1-Guide Pile Stiffness\_Steel Float 36inch Pile 2-22-2022.xlsx, 22 February 2022.

#### Introduction

A new cruise ship dock is being constructed in Skagway, AK at the location of an unused ore dock. Float designs are being considered to replace the old dock, including a concrete pontoon and a tubular steel dock. The location of the dock has a shallow depth; therefore, float draft and vertical motions are important considerations for float design. The purpose of this study was to analyze two floating dock designs to determine their expected motions and pile loads to assist with design selection. Figure 1 shows layout of the existing ore dock's orientation relative to true north.



Figure 1 Existing ore dock

#### **Float Options**

Two float options were considered, a rectangular concrete pontoon and a steel Transpac float. The particulars of each of the floats are given in Table 1.

| Float<br>Option | Construction | Length<br>(ft) | Breadth<br>(ft) | Draft<br>(ft) | Displacement<br>(LT) |
|-----------------|--------------|----------------|-----------------|---------------|----------------------|
| Option 1        | Concrete     | 250            | 50              | 9.56          | 3400                 |
| Option 2        | Steel        | 250            | 50              | 4.95          | 720                  |

Table 1Float particulars

#### Option 1

Option 1 is a 250ft×50ft concrete float. The float's geometry, mass, and inertia characteristics were taken from Reference 1.

#### Option 2

Option 2 is a Transpac designed steel float made up of six cylindrical pontoons arranged as shown in Figure 2 (Reference 2). The float's mass and inertia characteristics were taken from centers of gravity provided in Reference 1.



Figure 2 Option 2 steel float plan view

#### **Pile Configurations**

The pile configuration used for Option 1 is shown in Figure 3, and the pile locations for Option 2 are shown in Figure 4.



Figure 3 Pile locations for Option 1 float



Figure 4 Pile locations for Option 2 float

Pile stiffnesses were assumed to be the same between float designs, corresponding to 48" piles (Reference 3). After consideration of initial pile loads, additional cases with updated pile stiffnesses were simulated. The stiffnesses for these cases corresponded to 42" piles for the Option 1 float (Reference 7) and 36" piles for the Option 2 float (Reference 8).

#### Wind and Wave Climatology

#### Wind Speed

A 45-year record of wind speeds at Skagway airport was analyzed to estimate extreme wind speeds from the south in 50-year return period and 100-year return period storms. Northerly winds are not of interest at the site because they do not generate limiting wave heights at the berth. Annual maximum wind speeds, for a directional sector from 170°N to 255°N, were derived from the site data assuming that these directions provide the dominant fetch-based wave direction. The available wind data are sampled at one-hour intervals, so the samples measured are taken as estimates of the one-hour average wind speed.

The annual data were fitted to a Fischer-Tippet Type I extremal probability distribution. To improve the fit to the upper end of the wind speed range annual maxima below 28 knots were eliminated from the fitted data points.

Extreme one-hour wind speeds in the 50-year and 100-year return period storms were computed from the fits to the Skagway Airport data.

#### <u>Wave Height</u>

Wave heights for 50-year and 100-year return period storms were computed by the 1D wave generation model in ACES (Reference 4) which computes fetch-limited wave conditions. Winds are assumed to blow at a constant speed over a straight-line fetch direction toward the site. Wave heights increase with time until the energy input from the wind balances the dissipation due to white-capping and other dissipative effects. The maximum computed wave height is used as the characteristic wave height for the specified wind speed. ACES requires, as inputs, the measured wind speed, the averaging time of the measured wind speed, the height of the anemometer, and the temperature difference between the air and water. From these parameters it computes the equivalent wind speed at a standard 10m height, which is used in its wave generation algorithm.

The fetch lengths at the Skagway ore dock are shown in Figure 5.



Figure 5 Fetch radials from Skagway ore dock

As shown in Figure 5, Taiya Inlet is long and narrow, with a limited range of wind headings with long fetches. For conservatism, it is assumed that the extreme southerly winds in the 170°N - 255°N sector blow along the longest-fetch direction, 195°N. In sites with rapidly varying fetch lengths, such as Skagway, ACES implements energy-averaging algorithms to find the effective fetch length in the along-wind direction, from the input fetch lengths.

The 50-year and 100-year return period wind speeds and wave heights found are summarized in Table 2. Float motions were analyzed for waves with the given modal periods as well as periods  $\pm 0.5$  seconds to capture motions experienced for a range of periods.

|                                   | 50-YRP | 100-YRP |
|-----------------------------------|--------|---------|
| One-hour average wind speed (kts) | 59.61  | 63.76   |
| ACES significant wave height (ft) | 6.89   | 7.49    |
| ACES wave modal period (sec)      | 4.98   | 5.09    |

| Table 2  | 50-YRP and 100-YRP wind speeds and wave heights at Skagway ore docl   | k |
|----------|-----------------------------------------------------------------------|---|
| 1 abit 2 | 50-1 Ki and 100-1 Ki wind speeds and wave neights at 5kagway ore does | n |

#### Methodology

Float motions and pile loads were computed using the 3D radiation-diffraction code WAMIT (Reference 5). In a WAMIT model the underwater surface of a floating body is represented by a mesh of quadrilateral panels, at which fluid flow equations are solved to compute velocities and pressures arising in response to incoming wave excitation and body acceleration. Pressures are integrated over the underwater hull surface to compute wave excitation forces, hydrodynamic added mass, and wave radiation damping.

The meshes representing the Option 1 and 2 floats are shown in Figure 6 and Figure 7, respectively.



Figure 6 Option 1 WAMIT mesh



Figure 7 Option 2 WAMIT mesh

A long-crested, irregular JONSWAP wave spectrum is assumed for the analysis. The wave spectrum is represented as a series of superimposed regular waves at a range of frequencies spanning the energy content of the spectrum. At each frequency the wave amplitude is fixed by the spectral energy at that frequency, and the phase is assumed to be random.

At each frequency the rigid-body motion responses of the float are computed from the 6-DOF equations of motion.

To compute the extreme response in one hour, with 10% probability of exceedance, the exposure time  $T_{exposure}$  is ten hours, which gives approximately 10,000 response cycles in the 50-year and 100-year return period storms.

Motions were calculated for wave headings  $\pm 40^{\circ}$  from  $0^{\circ}$  which coincides with "project north" as given in Reference 6, 45.9° clockwise from true north.

Pile motions were multiplied by maximum pile stiffness values to determine pile loads in the longitudinal and transverse directions. It was assumed that pile stiffnesses are constant. As shown in Reference 3, pile stiffnesses are inversely related to pile deflection. However, due to the relatively low deflections, less than 0.7 ft in either direction, pile reactions are assumed to be their maximum.

Float motions and pile stiffnesses were calculated at mean higher high water (MHHW) and mean lower low water (MLLW). The values presented in the tables below are the maximum values occurring between MHHW and MLLW.

The WAMIT analysis performed is linear, meaning the geometry above the waterline is not modeled and the waterline shape is assumed constant as the free surface varies. This assumption is valid for small motions. As a float responds to waves in extreme conditions, there are changes in its submerged geometry that impact its behavior nonlinearly. This type of behavior is most apparent for roll and pitch where geometry changes are largest for small motions. WAMIT does not compute the nonlinear effects of the geometry above the free surface. Some wave overtopping is expected during extreme wave events, and these events are not captured by the model. These effects have a greater effect on the steel float due to the complexity of its shape and the free surface between pontoons beneath the float deck. The analysis does not account for wave loading on the cross-deck structure of the steel float.

#### **Float Motions**

Figure 8 presents the float axes used to define motions. The +X axis is aligned with project north.



Figure 8 Float axis definitions and naming conventions

| Motion      | Cor<br>48" | ncrete<br>Piles | Con<br>42" | crete<br>Piles | St<br>48" | eel<br>Piles | Steel<br>36'' Piles |         |  |
|-------------|------------|-----------------|------------|----------------|-----------|--------------|---------------------|---------|--|
|             | 50-YRP     | 100- YRP        | 50-YRP     | 100-YRP        | 50-YRP    | 100-YRP      | 50-YRP              | 100-YRP |  |
| Surge (ft)  | 0.38       | 0.44            | 0.64       | 0.68           | 0.09      | 0.10         | 0.18                | 0.19    |  |
| Sway (ft)   | 0.33       | 0.39            | 0.27       | 0.32           | 0.06      | 0.07         | 0.18                | 0.19    |  |
| Heave (ft)  | 0.98       | 1.10            | 0.98       | 1.10           | 1.41      | 1.46         | 1.41                | 1.46    |  |
| Roll (deg)  | 2.43       | 2.90            | 1.79       | 2.14           | 2.50      | 2.74         | 2.50                | 2.74    |  |
| Pitch (deg) | ) 2.04     | 2.42            | 2.04       | 2.43           | 1.13      | 1.31         | 1.13                | 1.31    |  |
| Yaw (deg)   | 0.08       | 0.09            | 0.13       | 0.15           | 0.02      | 0.02         | 0.04                | 0.05    |  |

| Table 3 s | ummarizes the maximum motions of each float under 50-YRP and 100-YRP waves |
|-----------|----------------------------------------------------------------------------|
| Table 3   | Summary of maximum float motions                                           |

#### **Pile Loads**

Table 4 summarizes the maximum pile loads on each of the float options.

| Table 4 | Summary | of maximum | pile loads | s in kips |
|---------|---------|------------|------------|-----------|
|         |         |            | 1          |           |

| Pile    | Directio<br>n | Concrete<br>48" Piles |         | Con<br>42" | icrete<br>Piles | St<br>48'' | teel<br>Piles | Steel<br>36" Piles |         |  |
|---------|---------------|-----------------------|---------|------------|-----------------|------------|---------------|--------------------|---------|--|
|         |               | 50-YRP                | 100-YRP | 50-YRP     | 100-YRP         | 50-YRP     | 100-YRP       | 50-YRP             | 100-YRP |  |
| NW      | +X            | 148                   | 158     | 183        | 195             | 61         | 65            | 37                 | 40      |  |
|         | +Y            | 157                   | 184     | 126        | 145             | 90         | 99            | 47                 | 54      |  |
| SW      | +X            | 148                   | 158     | 183        | 195             | 61         | 65            | 37                 | 40      |  |
|         | +Y            | 157                   | 184     | 126        | 145             | 101        | 111           | 53                 | 61      |  |
| NE      | +X            | 121                   | 130     | 150        | 159             | 47         | 50            | 29                 | 31      |  |
|         | +Y            | 110                   | 129     | 86         | 99              | 63         | 69            | 32                 | 36      |  |
| SE      | +X            | 121                   | 130     | 150        | 159             | 47         | 50            | 29                 | 31      |  |
|         | +Y            | 103                   | 120     | 81         | 93              | 70         | 77            | 36                 | 41      |  |
| N Mid   | +X            | 100                   | 107     | 105        | 112             | 47         | 50            | 22                 | 28      |  |
|         | +Y            | 75                    | 89      | 48         | 57              | 50         | 55            | 24                 | 27      |  |
| S M:4   | +X            | 86                    | 92      | 123        | 130             | 41         | 44            | 26                 | 32      |  |
| 5 IVI10 | +Y            | 67                    | 79      | 56         | 66              | 43         | 48            | 27                 | 30      |  |

# Appendix A Float Motions

Tables 5 through 16 present the motions of the Option 1 float for each wave heading relative to project north. Tables 17 through 28 show the float motions for the Option 2 float by heading.

| 0 | ption ^ | 1 — | Concrete | Float - | 48-inch | Piles |
|---|---------|-----|----------|---------|---------|-------|
|   | -       |     |          |         |         |       |

| Hs (ft) | Tp (ft)      | -40          | -30          | -20  | -10  | 0    | 10   | 20   | 30   | 40   |
|---------|--------------|--------------|--------------|------|------|------|------|------|------|------|
| 6.89    | 4.48         | 0.25         | 0.25         | 0.29 | 0.35 | 0.38 | 0.33 | 0.27 | 0.23 | 0.22 |
|         | 4.98         | 0.30         | 0.28         | 0.30 | 0.35 | 0.36 | 0.33 | 0.28 | 0.26 | 0.29 |
|         | 5.48         | 0.38         | 0.33         | 0.33 | 0.35 | 0.36 | 0.34 | 0.31 | 0.32 | 0.37 |
| 7.49    | 4.59         | 0.28         | 0.28         | 0.31 | 0.38 | 0.41 | 0.36 | 0.29 | 0.25 | 0.25 |
|         | 5.09         | 0.35         | 0.32         | 0.34 | 0.38 | 0.39 | 0.36 | 0.31 | 0.30 | 0.33 |
|         | 5.59         | 0.44         | 0.38         | 0.36 | 0.38 | 0.39 | 0.37 | 0.35 | 0.37 | 0.43 |
| Table 6 | +Y motions ( | (ft) – Optio | n 1 – 48" Pi | les  |      |      |      |      |      |      |
| Hs (ft) | Tp (ft)      | -40          | -30          | -20  | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89    | 4.48         | 0.13         | 0.08         | 0.08 | 0.06 | 0.00 | 0.06 | 0.08 | 0.08 | 0.13 |
|         | 4.98         | 0.22         | 0.14         | 0.12 | 0.10 | 0.00 | 0.10 | 0.12 | 0.14 | 0.22 |
|         | 5.48         | 0.33         | 0.21         | 0.17 | 0.14 | 0.00 | 0.14 | 0.18 | 0.21 | 0.33 |
| 7.49    | 4.59         | 0.17         | 0.10         | 0.09 | 0.07 | 0.00 | 0.07 | 0.10 | 0.10 | 0.17 |
|         | 5.09         | 0.27         | 0.17         | 0.14 | 0.11 | 0.00 | 0.11 | 0.14 | 0.17 | 0.27 |
|         | 5.59         | 0.39         | 0.26         | 0.21 | 0.17 | 0.00 | 0.17 | 0.21 | 0.26 | 0.39 |
| Table 7 | +Z motions ( | (ft) – Optio | n 1 – 48" Pi | les  |      |      |      |      |      |      |
| Hs (ft) | Tp (s)       | -40          | -30          | -20  | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89    | 4.48         | 0.53         | 0.47         | 0.43 | 0.41 | 0.41 | 0.41 | 0.43 | 0.47 | 0.53 |
|         | 4.98         | 0.81         | 0.74         | 0.66 | 0.61 | 0.60 | 0.61 | 0.66 | 0.74 | 0.81 |
|         | 5.48         | 0.95         | 0.98         | 0.92 | 0.86 | 0.84 | 0.86 | 0.92 | 0.98 | 0.95 |
| 7.49    | 4.59         | 0.65         | 0.57         | 0.52 | 0.50 | 0.49 | 0.50 | 0.52 | 0.57 | 0.65 |
|         | 5.09         | 0.93         | 0.88         | 0.78 | 0.72 | 0.70 | 0.72 | 0.78 | 0.88 | 0.93 |
|         | 5.59         | 1.04         | 1.10         | 1.05 | 1.00 | 0.97 | 1.00 | 1.05 | 1.10 | 1.04 |

Table 5 +X motions (ft) – Option 1 – 48" Piles

| Hs (ft)  | Tp (s)       | -40          | -30           | -20     | -10  | 0    | 10   | 20   | 30   | 40   |
|----------|--------------|--------------|---------------|---------|------|------|------|------|------|------|
| 6.89     | 4.48         | 0.98         | 0.57          | 0.53    | 0.38 | 0.00 | 0.38 | 0.53 | 0.57 | 0.98 |
|          | 4.98         | 1.70         | 1.02          | 0.82    | 0.62 | 0.00 | 0.63 | 0.82 | 1.01 | 1.69 |
|          | 5.48         | 2.43         | 1.54          | 1.19    | 0.93 | 0.00 | 0.94 | 1.20 | 1.54 | 2.43 |
| 7.49     | 4.59         | 1.24         | 0.72          | 0.63    | 0.46 | 0.00 | 0.47 | 0.64 | 0.72 | 1.23 |
|          | 5.09         | 2.01         | 1.22          | 0.97    | 0.74 | 0.00 | 0.75 | 0.97 | 1.22 | 2.00 |
|          | 5.59         | 2.90         | 1.84          | 1.42    | 1.12 | 0.00 | 1.12 | 1.42 | 1.84 | 2.89 |
| Table 9  | Pitch motion | ns (deg) – O | ption 1 – 48  | " Piles |      |      |      |      |      |      |
| Hs (ft)  | Tp (s)       | -40          | -30           | -20     | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89     | 4.48         | 0.75         | 0.58          | 0.53    | 0.52 | 0.52 | 0.52 | 0.53 | 0.58 | 0.75 |
|          | 4.98         | 1.27         | 0.95          | 0.86    | 0.85 | 0.85 | 0.85 | 0.86 | 0.95 | 1.27 |
|          | 5.48         | 2.03         | 1.42          | 1.20    | 1.17 | 1.17 | 1.17 | 1.20 | 1.42 | 2.04 |
| 7.49     | 4.59         | 0.92         | 0.72          | 0.65    | 0.63 | 0.63 | 0.63 | 0.65 | 0.72 | 0.92 |
|          | 5.09         | 1.54         | 1.13          | 1.02    | 1.01 | 1.01 | 1.01 | 1.02 | 1.13 | 1.54 |
|          | 5.59         | 2.42         | 1.69          | 1.39    | 1.34 | 1.33 | 1.34 | 1.39 | 1.69 | 2.42 |
| Table 10 | Yaw motion   | s (deg) – Oj | ption 1 – 48' | " Piles |      |      |      |      |      |      |
| Hs (ft)  | Tp (s)       | -40          | -30           | -20     | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89     | 4.48         | 0.08         | 0.07          | 0.06    | 0.06 | 0.06 | 0.05 | 0.04 | 0.05 | 0.07 |
|          | 4.98         | 0.08         | 0.07          | 0.06    | 0.05 | 0.05 | 0.04 | 0.05 | 0.06 | 0.07 |
|          | 5.48         | 0.08         | 0.07          | 0.06    | 0.05 | 0.04 | 0.03 | 0.04 | 0.06 | 0.08 |
| 7.49     | 4.59         | 0.09         | 0.08          | 0.07    | 0.06 | 0.06 | 0.05 | 0.05 | 0.06 | 0.08 |
|          | 5.09         | 0.08         | 0.08          | 0.07    | 0.06 | 0.05 | 0.04 | 0.05 | 0.06 | 0.08 |
|          | 5.59         | 0.09         | 0.07          | 0.06    | 0.05 | 0.04 | 0.04 | 0.05 | 0.06 | 0.09 |

 Table 8
 Roll motions (deg) – Option 1 – 48" Piles

Option 1 – Concrete Float – 42-inch Piles

| Hs (ft)  | Tp (ft)      | -40          | -30          | -20  | -10  | 0    | 10   | 20   | 30   | 40   |
|----------|--------------|--------------|--------------|------|------|------|------|------|------|------|
| 6.89     | 4.48         | 0.36         | 0.42         | 0.52 | 0.61 | 0.64 | 0.58 | 0.47 | 0.37 | 0.31 |
|          | 4.98         | 0.41         | 0.43         | 0.50 | 0.56 | 0.58 | 0.54 | 0.45 | 0.38 | 0.38 |
|          | 5.48         | 0.48         | 0.46         | 0.49 | 0.53 | 0.54 | 0.51 | 0.46 | 0.44 | 0.47 |
| 7.49     | 4.59         | 0.40         | 0.46         | 0.56 | 0.65 | 0.68 | 0.62 | 0.51 | 0.41 | 0.35 |
|          | 5.09         | 0.47         | 0.48         | 0.54 | 0.60 | 0.62 | 0.57 | 0.49 | 0.43 | 0.44 |
|          | 5.59         | 0.54         | 0.51         | 0.54 | 0.57 | 0.59 | 0.55 | 0.50 | 0.49 | 0.53 |
| Table 12 | +Y motions ( | (ft) – Optio | n 1 – 42" Pi | les  |      |      |      |      |      |      |
| Hs (ft)  | Tp (ft)      | -40          | -30          | -20  | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89     | 4.48         | 0.14         | 0.13         | 0.12 | 0.08 | 0.00 | 0.08 | 0.12 | 0.13 | 0.14 |
|          | 4.98         | 0.18         | 0.15         | 0.17 | 0.11 | 0.00 | 0.11 | 0.17 | 0.15 | 0.18 |
|          | 5.48         | 0.27         | 0.19         | 0.23 | 0.15 | 0.00 | 0.15 | 0.23 | 0.19 | 0.27 |
| 7.49     | 4.59         | 0.15         | 0.14         | 0.14 | 0.09 | 0.00 | 0.09 | 0.14 | 0.14 | 0.15 |
|          | 5.09         | 0.22         | 0.17         | 0.19 | 0.12 | 0.00 | 0.12 | 0.19 | 0.17 | 0.22 |
|          | 5.59         | 0.32         | 0.23         | 0.27 | 0.18 | 0.00 | 0.18 | 0.27 | 0.23 | 0.32 |
| Table 13 | +Z motions ( | ft) – Optio  | n 1 – 42" Pi | les  |      |      |      |      |      |      |
| Hs (ft)  | Tp (s)       | -40          | -30          | -20  | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89     | 4.48         | 0.53         | 0.47         | 0.43 | 0.41 | 0.41 | 0.41 | 0.43 | 0.47 | 0.53 |
|          | 4.98         | 0.81         | 0.74         | 0.66 | 0.61 | 0.60 | 0.61 | 0.66 | 0.74 | 0.81 |
|          | 5.48         | 0.95         | 0.98         | 0.92 | 0.86 | 0.84 | 0.86 | 0.92 | 0.98 | 0.95 |
| 7.49     | 4.59         | 0.65         | 0.57         | 0.52 | 0.50 | 0.49 | 0.50 | 0.52 | 0.57 | 0.65 |
|          | 5.09         | 0.93         | 0.88         | 0.78 | 0.72 | 0.70 | 0.72 | 0.78 | 0.88 | 0.93 |
|          | 5.59         | 1.04         | 1.10         | 1.05 | 1.00 | 0.97 | 1.00 | 1.05 | 1.10 | 1.04 |

Table 11 +X motions (ft) – Option 1 – 42" Piles

| Hs (ft)  | Tp (s)       | -40          | -30          | -20     | -10  | 0    | 10   | 20   | 30   | 40   |
|----------|--------------|--------------|--------------|---------|------|------|------|------|------|------|
| 6.89     | 4.48         | 0.74         | 0.78         | 0.75    | 0.45 | 0.00 | 0.45 | 0.75 | 0.78 | 0.74 |
|          | 4.98         | 1.10         | 1.20         | 1.21    | 0.74 | 0.00 | 0.73 | 1.21 | 1.20 | 1.10 |
|          | 5.48         | 1.64         | 1.69         | 1.79    | 1.09 | 0.00 | 1.09 | 1.79 | 1.69 | 1.64 |
| 7.49     | 4.59         | 0.88         | 0.93         | 0.92    | 0.55 | 0.00 | 0.55 | 0.92 | 0.93 | 0.88 |
|          | 5.09         | 1.31         | 1.42         | 1.44    | 0.87 | 0.00 | 0.87 | 1.44 | 1.41 | 1.32 |
|          | 5.59         | 1.96         | 1.98         | 2.14    | 1.31 | 0.00 | 1.31 | 2.14 | 1.98 | 1.96 |
| Table 15 | Pitch motior | ıs (deg) – O | ption 1 – 42 | " Piles |      |      |      |      |      |      |
| Hs (ft)  | Tp (s)       | -40          | -30          | -20     | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89     | 4.48         | 0.75         | 0.58         | 0.53    | 0.52 | 0.52 | 0.52 | 0.53 | 0.58 | 0.75 |
|          | 4.98         | 1.27         | 0.95         | 0.86    | 0.85 | 0.85 | 0.85 | 0.87 | 0.95 | 1.27 |
|          | 5.48         | 2.04         | 1.42         | 1.20    | 1.17 | 1.17 | 1.17 | 1.20 | 1.42 | 2.04 |
| 7.49     | 4.59         | 0.92         | 0.72         | 0.65    | 0.63 | 0.63 | 0.63 | 0.65 | 0.72 | 0.92 |
|          | 5.09         | 1.54         | 1.13         | 1.02    | 1.01 | 1.01 | 1.01 | 1.02 | 1.13 | 1.54 |
|          | 5.59         | 2.43         | 1.69         | 1.39    | 1.34 | 1.34 | 1.34 | 1.39 | 1.69 | 2.43 |
| Table 16 | Yaw motion   | s (deg) – Oj | ption 1 – 42 | " Piles |      |      |      |      |      |      |
| Hs (ft)  | Tp (s)       | -40          | -30          | -20     | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89     | 4.48         | 0.13         | 0.12         | 0.11    | 0.11 | 0.10 | 0.09 | 0.08 | 0.09 | 0.11 |
|          | 4.98         | 0.12         | 0.12         | 0.11    | 0.10 | 0.09 | 0.08 | 0.08 | 0.09 | 0.10 |
|          | 5.48         | 0.13         | 0.11         | 0.10    | 0.09 | 0.07 | 0.07 | 0.07 | 0.09 | 0.12 |
| 7.49     | 4.59         | 0.15         | 0.13         | 0.12    | 0.12 | 0.11 | 0.10 | 0.09 | 0.10 | 0.12 |
|          | 5.09         | 0.13         | 0.13         | 0.12    | 0.11 | 0.09 | 0.08 | 0.08 | 0.10 | 0.11 |
|          | 5.59         | 0.14         | 0.11         | 0.10    | 0.09 | 0.08 | 0.07 | 0.08 | 0.10 | 0.14 |

 Table 14
 Roll motions (deg) – Option 1 – 42" Piles

| 0 | ption | 2 | <ul> <li>Steel</li> </ul> | F | loat | _ | 48- | inch | Ρ | iles |
|---|-------|---|---------------------------|---|------|---|-----|------|---|------|
|   |       |   |                           |   |      |   |     |      |   |      |

| Hs (ft)  | <b>Tp (s)</b> | -40           | -30          | -20  | -10  | 0    | 10   | 20   | 30   | 40   |
|----------|---------------|---------------|--------------|------|------|------|------|------|------|------|
| 6.89     | 4.48          | 0.07          | 0.09         | 0.09 | 0.08 | 0.08 | 0.08 | 0.08 | 0.09 | 0.08 |
|          | 4.98          | 0.06          | 0.08         | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | 0.06 |
|          | 5.48          | 0.05          | 0.06         | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.06 | 0.05 |
| 7.49     | 4.59          | 0.08          | 0.10         | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 | 0.10 | 0.08 |
|          | 5.09          | 0.06          | 0.08         | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.08 | 0.07 |
|          | 5.59          | 0.05          | 0.06         | 0.07 | 0.08 | 0.08 | 0.07 | 0.07 | 0.06 | 0.06 |
| Table 18 | +Y motions    | (ft) – Optio  | n 2 – 48" Pi | les  |      |      |      |      |      |      |
| Hs (ft)  | Tp (s)        | -40           | -30          | -20  | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89     | 4.48          | 0.06          | 0.05         | 0.04 | 0.03 | 0.02 | 0.03 | 0.04 | 0.05 | 0.05 |
|          | 4.98          | 0.06          | 0.04         | 0.03 | 0.02 | 0.02 | 0.03 | 0.04 | 0.05 | 0.04 |
|          | 5.48          | 0.05          | 0.04         | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.04 | 0.04 |
| 7.49     | 4.59          | 0.07          | 0.05         | 0.04 | 0.03 | 0.02 | 0.03 | 0.04 | 0.06 | 0.05 |
|          | 5.09          | 0.06          | 0.04         | 0.03 | 0.03 | 0.02 | 0.03 | 0.04 | 0.05 | 0.04 |
|          | 5.59          | 0.06          | 0.04         | 0.03 | 0.02 | 0.02 | 0.02 | 0.03 | 0.04 | 0.04 |
| Table 19 | +Z motions    | (ft) – Option | 1 2 – 48" Pi | les  |      |      |      |      |      |      |
| Hs (ft)  | Tp (s)        | -40           | -30          | -20  | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89     | 4.48          | 1.41          | 1.25         | 1.03 | 0.91 | 0.85 | 0.84 | 0.96 | 1.19 | 1.35 |
|          | 4.98          | 1.13          | 1.02         | 0.93 | 0.88 | 0.85 | 0.82 | 0.84 | 0.92 | 0.99 |
|          | 5.48          | 1.03          | 0.87         | 0.78 | 0.76 | 0.75 | 0.71 | 0.69 | 0.76 | 0.88 |
| 7.49     | 4.59          | 1.46          | 1.31         | 1.12 | 1.00 | 0.93 | 0.93 | 1.03 | 1.24 | 1.36 |
|          | 5.09          | 1.19          | 1.06         | 0.97 | 0.94 | 0.91 | 0.87 | 0.88 | 0.95 | 1.03 |
|          | 5.59          | 1.10          | 0.93         | 0.82 | 0.80 | 0.78 | 0.74 | 0.72 | 0.81 | 0.95 |

| Table 17 | +X motions | (ft) – | Option | 2 - 48'' | Piles |
|----------|------------|--------|--------|----------|-------|
|----------|------------|--------|--------|----------|-------|

| Table 20 | Roll motions | (deg) – | <b>Option 2</b> | - 48" | Piles |
|----------|--------------|---------|-----------------|-------|-------|
|----------|--------------|---------|-----------------|-------|-------|

| Hs (ft)  | Tp (s)       | -40          | -30           | -20     | -10  | 0    | 10   | 20   | 30   | 40   |
|----------|--------------|--------------|---------------|---------|------|------|------|------|------|------|
| 6.89     | 4.48         | 2.45         | 2.50          | 2.16    | 1.69 | 1.31 | 1.14 | 1.17 | 1.45 | 1.82 |
|          | 4.98         | 2.19         | 2.44          | 2.26    | 1.82 | 1.38 | 1.22 | 1.29 | 1.58 | 2.06 |
|          | 5.48         | 2.06         | 2.26          | 2.17    | 1.85 | 1.58 | 1.53 | 1.62 | 1.87 | 2.23 |
| 7.49     | 4.59         | 2.61         | 2.74          | 2.40    | 1.88 | 1.44 | 1.22 | 1.26 | 1.56 | 1.94 |
|          | 5.09         | 2.33         | 2.60          | 2.44    | 1.98 | 1.54 | 1.40 | 1.48 | 1.80 | 2.30 |
|          | 5.59         | 2.23         | 2.42          | 2.34    | 2.02 | 1.76 | 1.72 | 1.83 | 2.06 | 2.48 |
| Table 21 | Pitch motion | ıs (deg) – O | ption 2 – 48  | " Piles |      |      |      |      |      |      |
| Hs (ft)  | Tp (s)       | -40          | -30           | -20     | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89     | 4.48         | 0.91         | 0.77          | 0.66    | 0.62 | 0.62 | 0.64 | 0.72 | 0.85 | 0.97 |
|          | 4.98         | 0.98         | 0.89          | 0.75    | 0.70 | 0.70 | 0.73 | 0.80 | 0.96 | 1.05 |
|          | 5.48         | 1.11         | 0.90          | 0.84    | 0.79 | 0.78 | 0.81 | 0.89 | 0.97 | 1.13 |
| 7.49     | 4.59         | 1.01         | 0.87          | 0.73    | 0.67 | 0.67 | 0.70 | 0.80 | 0.95 | 1.07 |
|          | 5.09         | 1.06         | 0.98          | 0.83    | 0.79 | 0.79 | 0.81 | 0.89 | 1.06 | 1.13 |
|          | 5.59         | 1.29         | 0.96          | 0.92    | 0.88 | 0.87 | 0.90 | 0.97 | 1.03 | 1.31 |
| Table 22 | Yaw motions  | s (deg) – Oj | ption 2 – 48' | " Piles |      |      |      |      |      |      |
| Hs (ft)  | Tp (s)       | -40          | -30           | -20     | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89     | 4.48         | 0.02         | 0.02          | 0.01    | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 |
|          | 4.98         | 0.02         | 0.02          | 0.01    | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 |
|          | 5.48         | 0.02         | 0.02          | 0.01    | 0.01 | 0.00 | 0.01 | 0.01 | 0.02 | 0.02 |
| 7.49     | 4.59         | 0.02         | 0.02          | 0.01    | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 |
|          | 5.09         | 0.02         | 0.02          | 0.01    | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 |
|          | 5.59         | 0.02         | 0.02          | 0.01    | 0.01 | 0.00 | 0.01 | 0.01 | 0.02 | 0.02 |

| 0 | ption | 2 | <ul> <li>Steel</li> </ul> | F | loat | _ | 36- | -inch | Ρ | iles |
|---|-------|---|---------------------------|---|------|---|-----|-------|---|------|
|   |       |   |                           |   |      |   |     |       |   |      |

| <b>TT</b> (0) |            | 40           | •            | • •  | 10   |      | 4.0  | • •  | 20   |      |
|---------------|------------|--------------|--------------|------|------|------|------|------|------|------|
| Hs (ft)       | Tp (s)     | -40          | -30          | -20  | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89          | 4.48       | 0.15         | 0.18         | 0.18 | 0.18 | 0.18 | 0.17 | 0.18 | 0.18 | 0.15 |
|               | 4.98       | 0.12         | 0.14         | 0.15 | 0.15 | 0.16 | 0.15 | 0.15 | 0.14 | 0.12 |
|               | 5.48       | 0.10         | 0.11         | 0.12 | 0.12 | 0.13 | 0.12 | 0.12 | 0.12 | 0.10 |
| 7.49          | 4.59       | 0.15         | 0.18         | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.16 |
|               | 5.09       | 0.12         | 0.14         | 0.15 | 0.16 | 0.16 | 0.16 | 0.16 | 0.14 | 0.12 |
|               | 5.59       | 0.11         | 0.12         | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 | 0.11 |
| Table 24      | +Y motions | (ft) – Optio | n 2 – 36" Pi | iles |      |      |      |      |      |      |
| Hs (ft)       | Tp (s)     | -40          | -30          | -20  | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89          | 4.48       | 0.18         | 0.13         | 0.10 | 0.07 | 0.06 | 0.07 | 0.09 | 0.12 | 0.11 |
|               | 4.98       | 0.17         | 0.11         | 0.08 | 0.06 | 0.05 | 0.06 | 0.08 | 0.10 | 0.10 |
|               | 5.48       | 0.15         | 0.10         | 0.07 | 0.05 | 0.04 | 0.05 | 0.06 | 0.09 | 0.09 |
| 7.49          | 4.59       | 0.19         | 0.13         | 0.10 | 0.07 | 0.06 | 0.07 | 0.10 | 0.12 | 0.11 |
|               | 5.09       | 0.18         | 0.12         | 0.09 | 0.06 | 0.05 | 0.06 | 0.08 | 0.10 | 0.10 |
|               | 5.59       | 0.16         | 0.11         | 0.08 | 0.05 | 0.04 | 0.05 | 0.07 | 0.09 | 0.10 |
| Table 25      | +Z motions | (ft) – Optio | n 2 – 36" Pi | les  |      |      |      |      |      |      |
| Hs (ft)       | Tp (s)     | -40          | -30          | -20  | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89          | 4.48       | 1.41         | 1.25         | 1.03 | 0.91 | 0.85 | 0.84 | 0.96 | 1.19 | 1.35 |
|               | 4.98       | 1.13         | 1.02         | 0.93 | 0.88 | 0.85 | 0.82 | 0.84 | 0.92 | 0.99 |
|               | 5.48       | 1.03         | 0.87         | 0.78 | 0.76 | 0.75 | 0.71 | 0.69 | 0.76 | 0.88 |
| 7.49          | 4.59       | 1.46         | 1.31         | 1.12 | 1.00 | 0.93 | 0.93 | 1.03 | 1.24 | 1.36 |
|               | 5.09       | 1.19         | 1.06         | 0.97 | 0.94 | 0.91 | 0.87 | 0.88 | 0.95 | 1.03 |
|               | 5.59       | 1.10         | 0.93         | 0.82 | 0.80 | 0.78 | 0.74 | 0.72 | 0.81 | 0.95 |

Table 23 +X motions (ft) – Option 2 – 36" Piles

| Table 26 | Roll motions | (deg) - | Option 2 - | - 36" | Piles |
|----------|--------------|---------|------------|-------|-------|
|----------|--------------|---------|------------|-------|-------|

| Hs (ft)  | Tp (s)       | -40          | -30           | -20     | -10  | 0    | 10   | 20   | 30   | 40   |
|----------|--------------|--------------|---------------|---------|------|------|------|------|------|------|
| 6.89     | 4.48         | 2.45         | 2.50          | 2.16    | 1.69 | 1.31 | 1.14 | 1.17 | 1.45 | 1.82 |
|          | 4.98         | 2.19         | 2.44          | 2.26    | 1.82 | 1.38 | 1.22 | 1.29 | 1.58 | 2.06 |
|          | 5.48         | 2.06         | 2.26          | 2.17    | 1.85 | 1.58 | 1.53 | 1.62 | 1.87 | 2.23 |
| 7.49     | 4.59         | 2.61         | 2.74          | 2.40    | 1.88 | 1.44 | 1.22 | 1.26 | 1.56 | 1.95 |
|          | 5.09         | 2.33         | 2.60          | 2.44    | 1.98 | 1.54 | 1.40 | 1.48 | 1.80 | 2.30 |
|          | 5.59         | 2.23         | 2.42          | 2.34    | 2.02 | 1.76 | 1.72 | 1.83 | 2.07 | 2.48 |
| Table 27 | Pitch motion | ıs (deg) – O | option 2 – 36 | " Piles |      |      |      |      |      |      |
| Hs (ft)  | Tp (s)       | -40          | -30           | -20     | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89     | 4.48         | 0.91         | 0.78          | 0.66    | 0.62 | 0.62 | 0.64 | 0.72 | 0.85 | 0.97 |
|          | 4.98         | 0.98         | 0.89          | 0.75    | 0.70 | 0.70 | 0.73 | 0.80 | 0.96 | 1.05 |
|          | 5.48         | 1.11         | 0.90          | 0.84    | 0.79 | 0.78 | 0.81 | 0.89 | 0.97 | 1.13 |
| 7.49     | 4.59         | 1.01         | 0.87          | 0.73    | 0.67 | 0.67 | 0.70 | 0.80 | 0.95 | 1.07 |
|          | 5.09         | 1.06         | 0.98          | 0.83    | 0.79 | 0.79 | 0.81 | 0.89 | 1.06 | 1.13 |
|          | 5.59         | 1.29         | 0.96          | 0.92    | 0.88 | 0.87 | 0.90 | 0.97 | 1.03 | 1.31 |
| Table 28 | Yaw motions  | s (deg) – Oj | ption 2 – 36  | " Piles |      |      |      |      |      |      |
| Hs (ft)  | Tp (s)       | -40          | -30           | -20     | -10  | 0    | 10   | 20   | 30   | 40   |
| 6.89     | 4.48         | 0.04         | 0.04          | 0.03    | 0.02 | 0.01 | 0.01 | 0.02 | 0.03 | 0.04 |
|          | 4.98         | 0.04         | 0.04          | 0.03    | 0.02 | 0.01 | 0.01 | 0.02 | 0.03 | 0.04 |
|          | 5.48         | 0.04         | 0.03          | 0.03    | 0.02 | 0.01 | 0.01 | 0.02 | 0.03 | 0.03 |
| 7.49     | 4.59         | 0.05         | 0.04          | 0.03    | 0.02 | 0.01 | 0.01 | 0.02 | 0.03 | 0.04 |
|          | 5.09         | 0.04         | 0.04          | 0.03    | 0.02 | 0.01 | 0.01 | 0.02 | 0.03 | 0.04 |
|          | 5.59         | 0.04         | 0.03          | 0.03    | 0.02 | 0.01 | 0.01 | 0.02 | 0.03 | 0.04 |

# Appendix B Pile Loads

Tables 19 through 40 show the pile loads for the Option 1 float for each wave heading relative to project north. Tables 41 through 52 show the pile loads for the Option 2 float by heading.

Option 1 – Concrete Float – 48-inch Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0   | 10  | 20  | 30  | 40  |
|----|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| +X | 6.89    | 4.48   | 86  | 90  | 108 | 137 | 148 | 131 | 106 | 90  | 84  |
|    |         | 4.98   | 103 | 97  | 108 | 129 | 138 | 125 | 107 | 97  | 101 |
| _  |         | 5.48   | 123 | 112 | 113 | 125 | 132 | 123 | 112 | 112 | 122 |
|    | 7.49    | 4.59   | 97  | 99  | 117 | 147 | 158 | 141 | 115 | 99  | 94  |
|    |         | 5.09   | 117 | 109 | 118 | 139 | 148 | 135 | 117 | 109 | 115 |
| _  |         | 5.59   | 138 | 125 | 124 | 136 | 142 | 133 | 124 | 125 | 137 |
| +Y | 6.89    | 4.48   | 91  | 71  | 62  | 57  | 51  | 55  | 63  | 71  | 87  |
|    |         | 4.98   | 102 | 80  | 72  | 57  | 43  | 54  | 69  | 76  | 105 |
|    |         | 5.48   | 122 | 76  | 77  | 59  | 36  | 59  | 78  | 81  | 129 |
|    | 7.49    | 4.59   | 102 | 81  | 69  | 61  | 53  | 59  | 70  | 79  | 99  |
|    |         | 5.09   | 114 | 87  | 80  | 62  | 45  | 59  | 76  | 84  | 119 |
|    |         | 5.59   | 141 | 87  | 86  | 66  | 38  | 68  | 90  | 89  | 148 |

 Table 29
 NW pile loads - Option 1 - 48" Piles

Table 30SW pile loads - Option 1 - 48" Piles

| _  | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0   | 10  | 20  | 30  | 40  |
|----|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| +X | 6.89    | 4.48   | 86  | 90  | 108 | 137 | 148 | 131 | 106 | 90  | 84  |
|    |         | 4.98   | 103 | 97  | 108 | 129 | 138 | 125 | 107 | 97  | 101 |
|    |         | 5.48   | 123 | 112 | 113 | 125 | 132 | 123 | 112 | 112 | 122 |
|    | 7.49    | 4.59   | 97  | 99  | 117 | 147 | 158 | 141 | 115 | 99  | 94  |
|    |         | 5.09   | 117 | 109 | 118 | 139 | 148 | 135 | 117 | 109 | 115 |
|    |         | 5.59   | 138 | 125 | 124 | 136 | 142 | 133 | 124 | 125 | 137 |
| +Y | 6.89    | 4.48   | 94  | 73  | 65  | 60  | 51  | 40  | 36  | 48  | 73  |
|    |         | 4.98   | 105 | 74  | 70  | 59  | 43  | 40  | 44  | 59  | 88  |
|    |         | 5.48   | 125 | 76  | 75  | 62  | 36  | 45  | 53  | 75  | 116 |
|    | 7.49    | 4.59   | 104 | 81  | 72  | 65  | 53  | 43  | 41  | 53  | 82  |
|    |         | 5.09   | 117 | 80  | 77  | 64  | 45  | 44  | 50  | 67  | 100 |
|    |         | 5.59   | 144 | 87  | 84  | 69  | 38  | 52  | 62  | 87  | 136 |
Table 31NE pile loads – Option 1 – 48" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0   | 10  | 20 | 30 | 40  |
|----|---------|--------|-----|-----|-----|-----|-----|-----|----|----|-----|
| +X | 6.89    | 4.48   | 75  | 76  | 90  | 113 | 121 | 105 | 83 | 68 | 62  |
|    |         | 4.98   | 86  | 82  | 90  | 107 | 112 | 100 | 82 | 73 | 78  |
|    |         | 5.48   | 99  | 91  | 93  | 103 | 106 | 97  | 87 | 87 | 96  |
|    | 7.49    | 4.59   | 84  | 84  | 98  | 121 | 130 | 113 | 90 | 74 | 70  |
|    |         | 5.09   | 96  | 92  | 99  | 115 | 120 | 107 | 90 | 82 | 89  |
|    |         | 5.59   | 111 | 101 | 102 | 111 | 115 | 105 | 96 | 98 | 108 |
| +Y | 6.89    | 4.48   | 59  | 47  | 40  | 37  | 33  | 36  | 42 | 47 | 57  |
|    |         | 4.98   | 67  | 53  | 47  | 37  | 28  | 36  | 45 | 50 | 69  |
|    |         | 5.48   | 80  | 50  | 51  | 39  | 24  | 39  | 51 | 53 | 85  |
|    | 7.49    | 4.59   | 67  | 53  | 45  | 40  | 35  | 39  | 46 | 52 | 65  |
|    |         | 5.09   | 75  | 57  | 52  | 41  | 29  | 39  | 50 | 55 | 78  |
|    |         | 5.59   | 93  | 57  | 56  | 43  | 25  | 44  | 59 | 59 | 97  |

Table 32SE pile loads - Option 1 - 48" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0   | 10  | 20 | 30 | 40  |
|----|---------|--------|-----|-----|-----|-----|-----|-----|----|----|-----|
| +X | 6.89    | 4.48   | 75  | 76  | 90  | 113 | 121 | 105 | 83 | 68 | 62  |
|    |         | 4.98   | 86  | 82  | 90  | 107 | 112 | 100 | 82 | 73 | 78  |
|    |         | 5.48   | 99  | 91  | 93  | 103 | 106 | 97  | 87 | 87 | 96  |
|    | 7.49    | 4.59   | 84  | 84  | 98  | 121 | 130 | 113 | 90 | 74 | 70  |
|    |         | 5.09   | 96  | 92  | 99  | 115 | 120 | 107 | 90 | 82 | 89  |
|    |         | 5.59   | 111 | 101 | 102 | 111 | 115 | 105 | 96 | 98 | 108 |
| +Y | 6.89    | 4.48   | 61  | 48  | 43  | 40  | 34  | 26  | 23 | 31 | 48  |
|    |         | 4.98   | 69  | 49  | 46  | 39  | 28  | 26  | 29 | 33 | 58  |
|    |         | 5.48   | 82  | 46  | 49  | 40  | 24  | 29  | 35 | 40 | 76  |
|    | 7.49    | 4.59   | 68  | 53  | 47  | 42  | 35  | 28  | 27 | 35 | 54  |
|    |         | 5.09   | 77  | 52  | 50  | 42  | 29  | 29  | 33 | 35 | 66  |
|    |         | 5.59   | 95  | 53  | 55  | 45  | 25  | 34  | 41 | 46 | 89  |

| Table 33 | North Middle pile loads – Option 1 – 48" Piles |  |
|----------|------------------------------------------------|--|
|----------|------------------------------------------------|--|

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0   | 10  | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|-----|-----|----|----|----|
| +X | 6.89    | 4.48   | 57  | 60  | 72  | 92  | 100 | 89  | 73 | 63 | 59 |
|    |         | 4.98   | 69  | 65  | 72  | 87  | 94  | 86  | 74 | 69 | 71 |
|    |         | 5.48   | 84  | 76  | 76  | 85  | 89  | 84  | 78 | 77 | 84 |
|    | 7.49    | 4.59   | 47  | 64  | 65  | 79  | 99  | 107 | 96 | 80 | 69 |
|    |         | 5.09   | 40  | 79  | 73  | 79  | 94  | 100 | 93 | 82 | 76 |
|    |         | 5.59   | 35  | 94  | 85  | 84  | 92  | 96  | 91 | 86 | 86 |
| +Y | 6.89    | 4.48   | 19  | 13  | 12  | 8   | 2   | 8   | 11 | 12 | 18 |
|    |         | 4.98   | 27  | 15  | 15  | 11  | 2   | 10  | 14 | 14 | 26 |
|    |         | 5.48   | 36  | 22  | 20  | 15  | 2   | 15  | 19 | 21 | 35 |
|    | 7.49    | 4.59   | 22  | 22  | 13  | 14  | 10  | 2   | 9  | 12 | 12 |
|    |         | 5.09   | 19  | 31  | 17  | 17  | 13  | 2   | 12 | 16 | 17 |
|    |         | 5.59   | 16  | 42  | 26  | 23  | 18  | 2   | 17 | 23 | 26 |

Table 34South Middle pile loads – Option 1 – 48" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 49  | 51  | 62  | 79  | 86 | 77 | 63 | 54 | 51 |
|    |         | 4.98   | 59  | 56  | 62  | 75  | 80 | 74 | 64 | 59 | 61 |
|    |         | 5.48   | 72  | 65  | 65  | 73  | 77 | 72 | 67 | 66 | 72 |
|    | 7.49    | 4.59   | 55  | 56  | 67  | 85  | 92 | 82 | 69 | 60 | 57 |
|    |         | 5.09   | 68  | 62  | 68  | 81  | 86 | 80 | 70 | 66 | 69 |
|    |         | 5.59   | 81  | 73  | 72  | 79  | 83 | 79 | 73 | 74 | 81 |
| +Y | 6.89    | 4.48   | 16  | 11  | 10  | 7   | 2  | 8  | 11 | 12 | 17 |
|    |         | 4.98   | 24  | 13  | 13  | 10  | 2  | 10 | 14 | 14 | 24 |
|    |         | 5.48   | 32  | 19  | 18  | 13  | 1  | 14 | 18 | 20 | 32 |
|    | 7.49    | 4.59   | 19  | 12  | 12  | 8   | 2  | 9  | 13 | 13 | 20 |
|    |         | 5.09   | 28  | 16  | 15  | 11  | 2  | 12 | 16 | 16 | 28 |
|    |         | 5.59   | 37  | 23  | 21  | 16  | 1  | 16 | 22 | 23 | 38 |

Option 1 – Concrete Float – 42-inch Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0   | 10  | 20  | 30  | 40  |
|----|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| +X | 6.89    | 4.48   | 95  | 115 | 147 | 174 | 183 | 168 | 138 | 110 | 92  |
|    |         | 4.98   | 107 | 114 | 136 | 157 | 165 | 153 | 129 | 109 | 105 |
|    |         | 5.48   | 120 | 120 | 131 | 145 | 150 | 141 | 126 | 117 | 119 |
|    | 7.49    | 4.59   | 105 | 124 | 157 | 185 | 195 | 179 | 148 | 118 | 102 |
|    |         | 5.09   | 120 | 125 | 146 | 167 | 175 | 163 | 139 | 120 | 118 |
|    |         | 5.59   | 133 | 132 | 142 | 155 | 161 | 152 | 137 | 129 | 132 |
| +Y | 6.89    | 4.48   | 97  | 85  | 77  | 73  | 68  | 74  | 80  | 85  | 96  |
|    |         | 4.98   | 102 | 92  | 82  | 68  | 57  | 65  | 77  | 87  | 104 |
|    |         | 5.48   | 117 | 97  | 83  | 65  | 49  | 59  | 77  | 94  | 126 |
|    | 7.49    | 4.59   | 107 | 95  | 85  | 77  | 71  | 78  | 87  | 93  | 106 |
|    |         | 5.09   | 114 | 100 | 90  | 73  | 60  | 69  | 83  | 95  | 116 |
|    |         | 5.59   | 133 | 108 | 90  | 71  | 51  | 64  | 85  | 107 | 145 |

Table 35NW pile loads - Option 1 - 42" Piles

Table 36SW pile loads - Option 1 - 42" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0   | 10  | 20  | 30  | 40  |
|----|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| +X | 6.89    | 4.48   | 95  | 115 | 147 | 174 | 183 | 168 | 138 | 110 | 92  |
|    |         | 4.98   | 107 | 114 | 136 | 157 | 165 | 153 | 129 | 109 | 105 |
|    |         | 5.48   | 120 | 120 | 131 | 145 | 150 | 141 | 126 | 117 | 119 |
|    | 7.49    | 4.59   | 105 | 124 | 157 | 185 | 195 | 179 | 148 | 118 | 102 |
|    |         | 5.09   | 120 | 125 | 146 | 167 | 175 | 163 | 139 | 120 | 118 |
|    |         | 5.59   | 133 | 132 | 142 | 155 | 161 | 152 | 137 | 129 | 132 |
| +Y | 6.89    | 4.48   | 106 | 94  | 87  | 81  | 68  | 54  | 54  | 68  | 81  |
|    |         | 4.98   | 105 | 93  | 85  | 73  | 57  | 49  | 59  | 81  | 101 |
|    |         | 5.48   | 117 | 97  | 82  | 66  | 49  | 49  | 64  | 94  | 126 |
|    | 7.49    | 4.59   | 115 | 103 | 94  | 86  | 71  | 57  | 60  | 77  | 93  |
|    |         | 5.09   | 114 | 100 | 91  | 77  | 60  | 53  | 66  | 90  | 115 |
|    |         | 5.59   | 133 | 108 | 90  | 71  | 51  | 55  | 71  | 107 | 145 |

Table 37NE pile loads – Option 1 – 42" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0   | 10  | 20  | 30  | 40  |
|----|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| +X | 6.89    | 4.48   | 82  | 98  | 123 | 144 | 150 | 136 | 110 | 85  | 68  |
|    |         | 4.98   | 90  | 97  | 114 | 130 | 135 | 122 | 101 | 83  | 81  |
|    |         | 5.48   | 97  | 99  | 108 | 119 | 122 | 112 | 98  | 91  | 94  |
|    | 7.49    | 4.59   | 91  | 106 | 131 | 152 | 159 | 144 | 118 | 91  | 76  |
|    |         | 5.09   | 99  | 105 | 122 | 138 | 143 | 130 | 109 | 92  | 92  |
|    |         | 5.59   | 107 | 108 | 117 | 127 | 130 | 121 | 107 | 101 | 105 |
| +Y | 6.89    | 4.48   | 63  | 55  | 50  | 47  | 44  | 48  | 52  | 55  | 62  |
|    |         | 4.98   | 70  | 60  | 53  | 44  | 37  | 42  | 50  | 56  | 69  |
|    |         | 5.48   | 80  | 67  | 54  | 42  | 32  | 39  | 50  | 65  | 86  |
|    | 7.49    | 4.59   | 70  | 62  | 55  | 50  | 46  | 51  | 56  | 60  | 69  |
|    |         | 5.09   | 78  | 65  | 59  | 48  | 39  | 45  | 54  | 62  | 79  |
|    |         | 5.59   | 91  | 74  | 59  | 46  | 33  | 42  | 55  | 73  | 99  |

Table 38SE pile loads - Option 1 - 42" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0   | 10  | 20  | 30  | 40  |
|----|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| +X | 6.89    | 4.48   | 82  | 98  | 123 | 144 | 150 | 136 | 110 | 85  | 68  |
|    |         | 4.98   | 90  | 97  | 114 | 130 | 135 | 122 | 101 | 83  | 81  |
|    |         | 5.48   | 97  | 99  | 108 | 119 | 122 | 112 | 98  | 91  | 94  |
|    | 7.49    | 4.59   | 91  | 106 | 131 | 152 | 159 | 144 | 118 | 91  | 76  |
|    |         | 5.09   | 99  | 105 | 122 | 138 | 143 | 130 | 109 | 92  | 92  |
|    |         | 5.59   | 107 | 108 | 117 | 127 | 130 | 121 | 107 | 101 | 105 |
| +Y | 6.89    | 4.48   | 69  | 61  | 57  | 52  | 44  | 35  | 31  | 36  | 48  |
|    |         | 4.98   | 70  | 60  | 55  | 47  | 37  | 32  | 34  | 40  | 55  |
|    |         | 5.48   | 81  | 60  | 53  | 43  | 32  | 32  | 39  | 46  | 67  |
|    | 7.49    | 4.59   | 75  | 67  | 61  | 56  | 46  | 37  | 34  | 40  | 52  |
|    |         | 5.09   | 78  | 65  | 59  | 50  | 39  | 34  | 38  | 45  | 62  |
|    |         | 5.59   | 93  | 67  | 58  | 46  | 33  | 35  | 45  | 53  | 78  |

| Table 39 | North Middle | pile loads – Opti | on 1 – 42" Piles |
|----------|--------------|-------------------|------------------|
|----------|--------------|-------------------|------------------|

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0   | 10  | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|-----|-----|----|----|----|
| +X | 6.89    | 4.48   | 53  | 65  | 84  | 99  | 105 | 97  | 81 | 65 | 56 |
|    |         | 4.98   | 61  | 64  | 78  | 90  | 95  | 89  | 76 | 65 | 63 |
|    |         | 5.48   | 70  | 69  | 75  | 83  | 87  | 82  | 74 | 69 | 70 |
|    | 7.49    | 4.59   | 59  | 70  | 90  | 106 | 112 | 103 | 87 | 70 | 62 |
|    |         | 5.09   | 69  | 71  | 83  | 96  | 101 | 95  | 82 | 72 | 70 |
|    |         | 5.59   | 78  | 76  | 81  | 89  | 93  | 88  | 80 | 76 | 79 |
| +Y | 6.89    | 4.48   | 24  | 19  | 13  | 8   | 3   | 7   | 12 | 17 | 22 |
|    |         | 4.98   | 34  | 23  | 15  | 9   | 2   | 8   | 13 | 22 | 33 |
|    |         | 5.48   | 48  | 31  | 17  | 11  | 2   | 10  | 16 | 30 | 47 |
|    | 7.49    | 4.59   | 27  | 21  | 15  | 9   | 3   | 8   | 13 | 20 | 26 |
|    |         | 5.09   | 40  | 26  | 16  | 10  | 2   | 9   | 15 | 25 | 39 |
|    |         | 5.59   | 57  | 37  | 20  | 12  | 2   | 12  | 19 | 36 | 56 |

Table 40South Middle pile loads – Option 1 – 42" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0   | 10  | 20  | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|-----|-----|-----|----|----|
| +X | 6.89    | 4.48   | 62  | 76  | 98  | 116 | 123 | 113 | 94  | 76 | 65 |
|    |         | 4.98   | 71  | 75  | 90  | 105 | 111 | 103 | 89  | 76 | 73 |
|    |         | 5.48   | 81  | 80  | 87  | 97  | 101 | 96  | 86  | 80 | 82 |
|    | 7.49    | 4.59   | 68  | 82  | 104 | 123 | 130 | 120 | 101 | 82 | 72 |
|    |         | 5.09   | 80  | 82  | 97  | 111 | 118 | 110 | 95  | 84 | 82 |
|    |         | 5.59   | 90  | 89  | 95  | 104 | 108 | 103 | 94  | 89 | 91 |
| +Y | 6.89    | 4.48   | 26  | 21  | 15  | 9   | 3   | 10  | 16  | 22 | 27 |
|    |         | 4.98   | 39  | 26  | 17  | 9   | 3   | 10  | 18  | 27 | 39 |
|    |         | 5.48   | 55  | 36  | 21  | 12  | 2   | 12  | 21  | 37 | 56 |
|    | 7.49    | 4.59   | 31  | 24  | 17  | 10  | 3   | 11  | 18  | 25 | 32 |
|    |         | 5.09   | 46  | 31  | 19  | 11  | 3   | 11  | 20  | 31 | 46 |
|    |         | 5.59   | 65  | 43  | 24  | 14  | 3   | 14  | 24  | 43 | 66 |

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 45  | 59  | 61  | 59  | 58 | 58 | 60 | 59 | 48 |
|    |         | 4.98   | 38  | 46  | 51  | 53  | 54 | 53 | 51 | 47 | 39 |
|    |         | 5.48   | 37  | 41  | 42  | 43  | 44 | 43 | 42 | 41 | 39 |
|    | 7.49    | 4.59   | 47  | 61  | 65  | 64  | 63 | 63 | 64 | 61 | 49 |
|    |         | 5.09   | 41  | 48  | 53  | 55  | 56 | 55 | 53 | 49 | 42 |
|    |         | 5.59   | 40  | 44  | 44  | 45  | 46 | 45 | 45 | 45 | 42 |
| +Y | 6.89    | 4.48   | 82  | 81  | 73  | 59  | 45 | 40 | 49 | 71 | 81 |
|    |         | 4.98   | 69  | 76  | 75  | 61  | 47 | 44 | 55 | 72 | 82 |
|    |         | 5.48   | 61  | 66  | 68  | 60  | 51 | 52 | 63 | 78 | 90 |
|    | 7.49    | 4.59   | 86  | 89  | 81  | 65  | 49 | 44 | 55 | 77 | 86 |
|    |         | 5.09   | 72  | 81  | 80  | 66  | 51 | 50 | 62 | 79 | 91 |
|    |         | 5.59   | 66  | 70  | 73  | 65  | 57 | 59 | 70 | 87 | 99 |

Option 2 – Steel Float – 48-inch Piles Table 41 NW pile loads – Option 2 – 48" Piles

| 1 abic + 2 = 5  w plic loads $= 0$ plicin $2 = +0$ 1 lies | Table 42 | SW pile | loads - O | ption 2 – | 48" Piles |
|-----------------------------------------------------------|----------|---------|-----------|-----------|-----------|
|-----------------------------------------------------------|----------|---------|-----------|-----------|-----------|

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 45  | 59  | 61  | 59  | 58 | 58 | 60 | 59 | 48 |
|    |         | 4.98   | 38  | 46  | 51  | 53  | 54 | 53 | 51 | 47 | 39 |
|    |         | 5.48   | 37  | 41  | 42  | 43  | 44 | 43 | 42 | 41 | 39 |
|    | 7.49    | 4.59   | 47  | 61  | 65  | 64  | 63 | 63 | 64 | 61 | 49 |
|    |         | 5.09   | 41  | 48  | 53  | 55  | 56 | 55 | 53 | 49 | 42 |
|    |         | 5.59   | 40  | 44  | 44  | 45  | 46 | 45 | 45 | 45 | 42 |
| +Y | 6.89    | 4.48   | 99  | 101 | 82  | 60  | 43 | 39 | 47 | 60 | 69 |
|    |         | 4.98   | 83  | 98  | 90  | 70  | 48 | 37 | 43 | 53 | 63 |
|    |         | 5.48   | 70  | 86  | 85  | 71  | 53 | 42 | 45 | 57 | 74 |
|    | 7.49    | 4.59   | 104 | 111 | 93  | 69  | 48 | 42 | 50 | 64 | 71 |
|    |         | 5.09   | 86  | 103 | 97  | 77  | 53 | 41 | 46 | 57 | 70 |
|    |         | 5.59   | 74  | 90  | 91  | 77  | 59 | 48 | 51 | 64 | 84 |

Table 43NE pile loads - Option 2 - 48" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 34  | 45  | 47  | 45  | 44 | 43 | 45 | 44 | 36 |
|    |         | 4.98   | 29  | 35  | 39  | 41  | 41 | 40 | 38 | 35 | 29 |
|    |         | 5.48   | 28  | 31  | 32  | 33  | 33 | 32 | 31 | 31 | 29 |
|    | 7.49    | 4.59   | 35  | 47  | 50  | 49  | 48 | 47 | 48 | 46 | 37 |
|    |         | 5.09   | 31  | 37  | 41  | 42  | 43 | 41 | 39 | 36 | 31 |
|    |         | 5.59   | 30  | 33  | 34  | 34  | 35 | 34 | 33 | 33 | 31 |
| +Y | 6.89    | 4.48   | 57  | 57  | 51  | 41  | 31 | 28 | 34 | 49 | 56 |
|    |         | 4.98   | 48  | 53  | 52  | 43  | 32 | 31 | 39 | 50 | 57 |
|    |         | 5.48   | 42  | 46  | 48  | 42  | 35 | 36 | 44 | 55 | 63 |
|    | 7.49    | 4.59   | 60  | 62  | 57  | 46  | 34 | 31 | 38 | 54 | 60 |
|    |         | 5.09   | 50  | 56  | 56  | 46  | 36 | 35 | 43 | 55 | 63 |
|    |         | 5.59   | 46  | 49  | 51  | 45  | 39 | 41 | 49 | 61 | 69 |

Table 44SE pile loads - Option 2 - 48" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 34  | 45  | 47  | 45  | 44 | 43 | 45 | 44 | 36 |
|    |         | 4.98   | 29  | 35  | 39  | 41  | 41 | 40 | 38 | 35 | 29 |
| _  |         | 5.48   | 28  | 31  | 32  | 33  | 33 | 32 | 31 | 31 | 29 |
|    | 7.49    | 4.59   | 35  | 47  | 50  | 49  | 48 | 47 | 48 | 46 | 37 |
|    |         | 5.09   | 31  | 37  | 41  | 42  | 43 | 41 | 39 | 36 | 31 |
|    |         | 5.59   | 30  | 33  | 34  | 34  | 35 | 34 | 33 | 33 | 31 |
| +Y | 6.89    | 4.48   | 69  | 70  | 57  | 42  | 30 | 27 | 33 | 42 | 48 |
|    |         | 4.98   | 58  | 68  | 63  | 49  | 33 | 26 | 30 | 37 | 44 |
|    |         | 5.48   | 49  | 60  | 59  | 49  | 37 | 30 | 32 | 39 | 52 |
|    | 7.49    | 4.59   | 73  | 77  | 65  | 48  | 34 | 29 | 35 | 44 | 50 |
|    |         | 5.09   | 60  | 72  | 68  | 53  | 37 | 29 | 32 | 40 | 49 |
|    |         | 5.59   | 52  | 63  | 63  | 54  | 41 | 34 | 36 | 45 | 59 |

 Table 45
 North Middle pile loads – Option 2 – 48" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 35  | 46  | 47  | 46  | 45 | 46 | 47 | 46 | 38 |
|    |         | 4.98   | 30  | 36  | 40  | 41  | 42 | 41 | 40 | 37 | 31 |
|    |         | 5.48   | 29  | 32  | 32  | 33  | 34 | 34 | 33 | 33 | 31 |
|    | 7.49    | 4.59   | 37  | 47  | 50  | 49  | 49 | 49 | 50 | 48 | 39 |
|    |         | 5.09   | 33  | 38  | 41  | 43  | 44 | 43 | 41 | 38 | 33 |
|    |         | 5.59   | 32  | 34  | 34  | 35  | 36 | 35 | 35 | 35 | 33 |
| +Y | 6.89    | 4.48   | 49  | 50  | 43  | 33  | 24 | 22 | 26 | 35 | 39 |
|    |         | 4.98   | 40  | 48  | 46  | 36  | 26 | 22 | 26 | 32 | 37 |
|    |         | 5.48   | 34  | 41  | 43  | 37  | 29 | 26 | 29 | 35 | 44 |
|    | 7.49    | 4.59   | 51  | 55  | 48  | 37  | 27 | 24 | 28 | 37 | 41 |
|    |         | 5.09   | 42  | 51  | 49  | 40  | 29 | 25 | 28 | 35 | 42 |
|    |         | 5.59   | 37  | 44  | 45  | 40  | 32 | 29 | 32 | 40 | 49 |

| Table 46 South | Middle pile | loads – O | ption 2 – | 48" Piles |
|----------------|-------------|-----------|-----------|-----------|
|----------------|-------------|-----------|-----------|-----------|

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 31  | 40  | 41  | 40  | 39 | 40 | 41 | 40 | 33 |
|    |         | 4.98   | 26  | 31  | 34  | 36  | 36 | 36 | 35 | 32 | 27 |
|    |         | 5.48   | 26  | 28  | 28  | 29  | 30 | 29 | 29 | 29 | 27 |
|    | 7.49    | 4.59   | 32  | 41  | 44  | 43  | 43 | 43 | 44 | 42 | 34 |
|    |         | 5.09   | 28  | 33  | 36  | 37  | 38 | 37 | 36 | 33 | 29 |
|    |         | 5.59   | 28  | 30  | 30  | 30  | 31 | 31 | 31 | 31 | 29 |
| +Y | 6.89    | 4.48   | 42  | 43  | 37  | 29  | 22 | 19 | 23 | 31 | 35 |
|    |         | 4.98   | 34  | 41  | 40  | 32  | 23 | 20 | 24 | 30 | 34 |
|    |         | 5.48   | 30  | 35  | 37  | 32  | 25 | 23 | 26 | 33 | 40 |
|    | 7.49    | 4.59   | 44  | 48  | 42  | 32  | 24 | 21 | 25 | 34 | 37 |
|    |         | 5.09   | 36  | 43  | 43  | 35  | 25 | 22 | 26 | 33 | 38 |
|    |         | 5.59   | 32  | 38  | 39  | 34  | 28 | 26 | 30 | 37 | 44 |

## Option 2 - Steel Float - 36-inch Piles

Table 47NW pile loads - Option 2 - 36" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 28  | 35  | 37  | 37  | 37 | 37 | 37 | 35 | 29 |
|    |         | 4.98   | 23  | 27  | 29  | 30  | 32 | 31 | 30 | 27 | 23 |
|    |         | 5.48   | 21  | 24  | 24  | 25  | 26 | 25 | 25 | 24 | 22 |
|    | 7.49    | 4.59   | 29  | 38  | 40  | 39  | 40 | 39 | 40 | 38 | 31 |
|    |         | 5.09   | 25  | 30  | 33  | 35  | 35 | 34 | 33 | 30 | 25 |
|    |         | 5.59   | 24  | 26  | 27  | 28  | 29 | 28 | 27 | 27 | 25 |
| +Y | 6.89    | 4.48   | 43  | 43  | 38  | 31  | 24 | 21 | 26 | 37 | 42 |
|    |         | 4.98   | 36  | 40  | 39  | 32  | 24 | 23 | 29 | 38 | 43 |
|    |         | 5.48   | 34  | 35  | 36  | 31  | 27 | 27 | 33 | 41 | 47 |
|    | 7.49    | 4.59   | 47  | 46  | 43  | 35  | 26 | 24 | 31 | 44 | 48 |
|    |         | 5.09   | 39  | 42  | 41  | 35  | 27 | 27 | 34 | 44 | 50 |
|    |         | 5.59   | 37  | 36  | 38  | 34  | 30 | 32 | 39 | 48 | 54 |

| Table 48 | SW r | oile loads – | Option 2 – | - 36" Piles |
|----------|------|--------------|------------|-------------|
|          |      |              |            |             |

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 28  | 35  | 37  | 37  | 37 | 37 | 37 | 35 | 29 |
|    |         | 4.98   | 23  | 27  | 29  | 30  | 32 | 31 | 30 | 27 | 23 |
|    |         | 5.48   | 21  | 24  | 24  | 25  | 26 | 25 | 25 | 24 | 22 |
|    | 7.49    | 4.59   | 29  | 38  | 40  | 39  | 40 | 39 | 40 | 38 | 31 |
|    |         | 5.09   | 25  | 30  | 33  | 35  | 35 | 34 | 33 | 30 | 25 |
|    |         | 5.59   | 24  | 26  | 27  | 28  | 29 | 28 | 27 | 27 | 25 |
| +Y | 6.89    | 4.48   | 52  | 53  | 43  | 32  | 23 | 21 | 25 | 32 | 36 |
|    |         | 4.98   | 43  | 51  | 47  | 36  | 25 | 19 | 22 | 28 | 33 |
|    |         | 5.48   | 37  | 45  | 44  | 37  | 28 | 22 | 24 | 30 | 39 |
|    | 7.49    | 4.59   | 58  | 61  | 51  | 37  | 26 | 22 | 27 | 35 | 39 |
|    |         | 5.09   | 48  | 57  | 53  | 42  | 28 | 21 | 25 | 31 | 38 |
|    |         | 5.59   | 41  | 50  | 50  | 42  | 31 | 25 | 27 | 34 | 45 |

Table 49NE pile loads - Option 2 - 36" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 22  | 28  | 29  | 29  | 29 | 28 | 28 | 27 | 22 |
|    |         | 4.98   | 18  | 21  | 23  | 24  | 25 | 24 | 23 | 21 | 18 |
|    |         | 5.48   | 17  | 19  | 19  | 20  | 20 | 19 | 19 | 18 | 17 |
|    | 7.49    | 4.59   | 22  | 29  | 31  | 31  | 31 | 30 | 30 | 28 | 23 |
|    |         | 5.09   | 19  | 22  | 25  | 26  | 26 | 25 | 24 | 22 | 19 |
|    |         | 5.59   | 18  | 20  | 21  | 21  | 21 | 20 | 20 | 20 | 18 |
| +Y | 6.89    | 4.48   | 29  | 29  | 26  | 21  | 16 | 14 | 17 | 25 | 28 |
|    |         | 4.98   | 24  | 27  | 26  | 22  | 16 | 16 | 19 | 25 | 29 |
|    |         | 5.48   | 22  | 23  | 24  | 21  | 18 | 18 | 22 | 28 | 32 |
|    | 7.49    | 4.59   | 31  | 31  | 29  | 23  | 18 | 16 | 21 | 29 | 32 |
|    |         | 5.09   | 26  | 28  | 28  | 23  | 18 | 18 | 23 | 30 | 34 |
|    |         | 5.59   | 24  | 25  | 25  | 23  | 20 | 21 | 26 | 32 | 36 |

Table 50SE pile loads - Option 2 - 36" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 22  | 28  | 29  | 29  | 29 | 28 | 28 | 27 | 22 |
|    |         | 4.98   | 18  | 21  | 23  | 24  | 25 | 24 | 23 | 21 | 18 |
|    |         | 5.48   | 17  | 19  | 19  | 20  | 20 | 19 | 19 | 18 | 17 |
|    | 7.49    | 4.59   | 22  | 29  | 31  | 31  | 31 | 30 | 30 | 28 | 23 |
|    |         | 5.09   | 19  | 22  | 25  | 26  | 26 | 25 | 24 | 22 | 19 |
|    |         | 5.59   | 18  | 20  | 21  | 21  | 21 | 20 | 20 | 20 | 18 |
| +Y | 6.89    | 4.48   | 35  | 36  | 29  | 21  | 15 | 14 | 17 | 21 | 24 |
|    |         | 4.98   | 29  | 34  | 32  | 25  | 17 | 13 | 15 | 19 | 22 |
|    |         | 5.48   | 25  | 30  | 30  | 25  | 19 | 15 | 16 | 20 | 26 |
|    | 7.49    | 4.59   | 39  | 41  | 34  | 25  | 17 | 15 | 18 | 24 | 26 |
|    |         | 5.09   | 32  | 38  | 36  | 28  | 19 | 14 | 17 | 21 | 25 |
|    |         | 5.59   | 28  | 33  | 33  | 28  | 21 | 17 | 18 | 23 | 30 |

 Table 51
 North Middle pile loads – Option 2 – 36" Piles

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 17  | 21  | 22  | 21  | 22 | 22 | 22 | 22 | 18 |
|    |         | 4.98   | 14  | 17  | 19  | 19  | 20 | 19 | 19 | 17 | 15 |
|    |         | 5.48   | 14  | 15  | 15  | 16  | 16 | 16 | 16 | 15 | 15 |
|    | 7.49    | 4.59   | 20  | 26  | 28  | 27  | 27 | 27 | 28 | 27 | 22 |
|    |         | 5.09   | 18  | 21  | 23  | 24  | 24 | 24 | 23 | 21 | 18 |
|    |         | 5.59   | 17  | 18  | 19  | 19  | 20 | 20 | 19 | 19 | 17 |
| +Y | 6.89    | 4.48   | 24  | 24  | 21  | 16  | 12 | 11 | 12 | 17 | 19 |
|    |         | 4.98   | 19  | 23  | 22  | 18  | 13 | 11 | 13 | 16 | 18 |
|    |         | 5.48   | 17  | 20  | 21  | 18  | 14 | 12 | 14 | 17 | 21 |
|    | 7.49    | 4.59   | 25  | 27  | 24  | 18  | 13 | 12 | 14 | 19 | 20 |
|    |         | 5.09   | 21  | 25  | 24  | 20  | 14 | 12 | 14 | 18 | 20 |
|    |         | 5.59   | 18  | 21  | 22  | 19  | 16 | 14 | 16 | 20 | 24 |

|    | Hs (ft) | Tp (s) | -40 | -30 | -20 | -10 | 0  | 10 | 20 | 30 | 40 |
|----|---------|--------|-----|-----|-----|-----|----|----|----|----|----|
| +X | 6.89    | 4.48   | 19  | 25  | 26  | 25  | 25 | 25 | 26 | 25 | 21 |
|    |         | 4.98   | 17  | 20  | 22  | 22  | 23 | 23 | 22 | 20 | 17 |
|    |         | 5.48   | 16  | 17  | 18  | 18  | 19 | 18 | 18 | 18 | 17 |
|    | 7.49    | 4.59   | 23  | 31  | 32  | 31  | 31 | 31 | 32 | 31 | 25 |
|    |         | 5.09   | 20  | 24  | 27  | 28  | 28 | 28 | 27 | 24 | 21 |
|    |         | 5.59   | 19  | 21  | 22  | 22  | 23 | 23 | 22 | 22 | 20 |
| +Y | 6.89    | 4.48   | 26  | 27  | 23  | 18  | 14 | 12 | 14 | 20 | 22 |
|    |         | 4.98   | 22  | 26  | 25  | 20  | 14 | 13 | 15 | 19 | 21 |
|    |         | 5.48   | 19  | 22  | 23  | 20  | 16 | 15 | 17 | 20 | 25 |
|    | 7.49    | 4.59   | 28  | 30  | 27  | 21  | 15 | 13 | 17 | 22 | 24 |
|    |         | 5.09   | 23  | 27  | 27  | 22  | 16 | 14 | 17 | 21 | 24 |
|    |         | 5.59   | 20  | 24  | 25  | 22  | 18 | 17 | 19 | 24 | 28 |

Table 52South Middle pile loads – Option 2 – 36" Piles

Appendix F – Electrical Design Narrative



## **TECHNICAL MEMORANDUM**

To: Ed DeBroeck From: Ben Haight Date: 17 June 2022

## SUBJECT: Skagway Dock – Narrative of 30% Electrical Design

Scope of Loads:

- Move existing Aerial 2.4 KV Power Lines to Underground.
- Power to the existing Ore Terminal Facility and Temsco.
- Power to new Floating Cruise Dock.
- Power to new Marine Service Platform and Fuel Header.
- Power for new RO/RO Ramp.
- Future Medium-voltage Cruise Ship Shore Power.
- Power to future Bathroom/Passenger Waiting Building.

There are two aerial lines supported by single structures along the shoreline between the ore terminal facility and the existing docks. The upper line is powered at 35 KV for transmission of energy between Skagway and Haines. This line transitions to a submarine cable at the southern shore. The lower line is powered at 2.4 KV and provides energy to the existing cruise ship dock and the ore terminal & ore loader via pad-mounted transformers near to those facilities.

The submarine cable to Haines will be replaced with a new cable routed from a new shoreside facility located near the Dyea Road in a separate project. It appears the new cable will be placed into operation in the next two to three years. We are not including new underground conduits for this circuit.

A new 2.4 KV underground feeder will be routed from the northern end of the project site (at an H structure next to State Street) to the southern end. It will be terminated at junctions strategically located to serve the RO/RO Ramp, the Marine Service Platform, and the Floating Cruise Dock, as well as the existing Ore Terminal Facility, Temsco, and a future Bathroom/Waiting Building. The cables and junctions may be rated to allow a future voltage increase to 12.5 KV. Two 4-inch conduits will be provided for this feeder.

Future medium-voltage shore power for the cruise ship dock will require the construction of a small substation somewhere close to the dock. It will occupy an area of approximately 60 ft x 80 ft. The substation will not be included in this project, but is expected to be located at the northern end of the project site. Power from the substation to the cruise ship dock will require

four 6-inch conduits. They will terminate at a vault onshore near the approach to the dock to allow for pulling in the cables.

We plan to include conduit for communications for future needs. A 2-inch conduit terminating at pedestals located near the approach to the dock and at the southern end of the project site will be included in the duct bank.

The RO/RO Ramp will have a service including a pad-mounted transformer and 480V distribution panel to power lights on the ramp and associated catwalk and dolphin, any equipment related to the operation of the ramp, a powered capstan on the associated dolphin, and cathodic protection for the fuel lines which pass underground under the new ramp.

The Marine Service Platform will have a service including a pad-mounted transformer and 480V distribution panel to power lights on the platform and associated catwalk and dolphins, any equipment related to the operation of the fuel header, a powered capstan on the associated dolphin, and provision for future electrically-powered mobile equipment. Provision for medium-voltage power for a mobile harbor crane is not included.

The existing Ore Terminal Facility (three-phase 240V) and Temsco (one-phase 240V) will be served by new pad-mounted transformers at the location of the existing pole-mounted Temsco transformer. This work will be coordinated with the respective owners and the utility, and temporary power will be provided to the existing utility customers during construction.

The Floating Cruise Dock will have a service including a pad-mounted transformer and 480V distribution panel to power lights on the dock and associated catwalk and dolphins, powered capstans (to be installed on the existing dolphins), and 120V maintenance power. The future Bathroom Building will also be served by this transformer. As an option, the dock could also be provided with 480V shore power; this would increase the flexibility of the dock, but would entail a much larger transformer and one or more power mounds installed on the dock.

Appendix G – Float Bid Drawings

|    | OVIDE FLOAT UNITS AND CONNECTIONS CAPABLE OF WITHSTANDING DESIGN LOADING                                                                                                                                                                                                                                                | 10.  | UTILITY LOAD                                       |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------|
| 1. | FLOAT UNITS SHALL BE CAPABLE OF SUPPORTING ALL DESIGN LOAD COMBINATIONS                                                                                                                                                                                                                                                 | A.   | WORK WITH 1<br>PROGRESSES                          |
| 2. | FREEBOARD:                                                                                                                                                                                                                                                                                                              | 11.  | THE FLOAT N                                        |
|    | A. DEAD LOAD FREEBOARD: 4'-8"                                                                                                                                                                                                                                                                                           |      | BE LOCATED                                         |
|    | B. THE FREEBOARD UNDER ALL DEAD LOADS SHALL NOT BE MORE THAN 2 INCH<br>BELOW OR MORE THAN 1 INCH ABOVE THE SPECIFIED FREEBOARD AFTER ONE<br>YEAR OF OPERATION. DEAD LOADS SHALL CONSIST OF THE FLOAT SYSTEM,<br>RUBSTRIPS, BULLRAIL, PILE RESTRAINT GUIDES, TRANSITION PLATES, AND ALL<br>OTHER ATTACHED APPURTENANCES. | 12.  | MOORING BOI<br>MOORING BOI<br>UFC 4-152-<br>PI AN· |
| 3. | UNIFORM LIVE LOAD:                                                                                                                                                                                                                                                                                                      |      |                                                    |
|    | A. 90 PSF UNIFORM LIVE LOAD LL(U) (FOR DESIGN OF STRUCTURES)                                                                                                                                                                                                                                                            |      |                                                    |
|    | B. FOR FLOATATION THE FLOAT SHALL CONSIDER 40PSF LIVE LOAD OVER THE ENTIRE FLOAT OR 1/4 OF THE FLOAT WITH 90PSF IN ANY LOCATION.                                                                                                                                                                                        |      |                                                    |
| 4. | LIVE LOAD:                                                                                                                                                                                                                                                                                                              |      |                                                    |
|    | A. 18 KIP AXLE FORKLIFT LOAD                                                                                                                                                                                                                                                                                            |      | LOCATION                                           |
|    | B. EMERGENCY AMBULANCE TYPE III VEHICLE 16,000 LB AXLE LOAD                                                                                                                                                                                                                                                             | BOLL | ARDS ON FLOA                                       |
|    | C. 4000 LB POINT LOAD                                                                                                                                                                                                                                                                                                   | 13   | STABILITY RE                                       |
|    | D. VEHICLE LOAD = AASHTO H10 TRUCK                                                                                                                                                                                                                                                                                      | Δ    |                                                    |
|    | E. FREEBOARD UNDER DL + POINT LL TO BE 6 FEET MINIMUM.                                                                                                                                                                                                                                                                  |      | CONDITIONS                                         |
|    | F. CROSS SLOPE SHALL NOT EXCEED 2%.                                                                                                                                                                                                                                                                                     | 14.  | PILE HOOPS                                         |
| 5. | SNOW LOAD:                                                                                                                                                                                                                                                                                                              | Α.   | PILE HOOPS                                         |
|    | 60 PSF                                                                                                                                                                                                                                                                                                                  | В.   | PILE HOOPS<br>FLOATS MAY                           |
| 6. | WIND LOAD:                                                                                                                                                                                                                                                                                                              | С.   | THE PILES SI                                       |
|    | 40 KNOT 30 SECOND DURATION WIND SPEED (WITH CRUISE SHIP DOCKED)                                                                                                                                                                                                                                                         |      | UNOBSTRUCT<br>LOCATION.                            |
|    | 140 MPH 3 SECOND GUST WITH NO CRUISE SHIP AND NO LIVE LOAD ON FLOAT                                                                                                                                                                                                                                                     | D.   | PILE HOOPS                                         |
| 7. | CURRENT LOAD:                                                                                                                                                                                                                                                                                                           |      | BEARINGS SH                                        |
|    | 1.5 FT/SEC CURRENT SPEED                                                                                                                                                                                                                                                                                                | E.   | PILE HOOPS                                         |
| 8. | SITE WAVE CONDITIONS                                                                                                                                                                                                                                                                                                    |      | TOOLS WORK                                         |
|    | ONE-HOUR AVERAGE WIND SPEED (KTS) 59.61 63.76                                                                                                                                                                                                                                                                           | F    | THE MOS'S N                                        |
|    | ACES SIGNIFICANT WAVE HEIGHT (FT) 6.89 7.49                                                                                                                                                                                                                                                                             |      | AND DETERM                                         |
|    | ACES WAVE MODAL PERIOD (SEC) 4.98 5.09                                                                                                                                                                                                                                                                                  |      | ACCOMMODAT<br>HOOPS IS NE                          |
| 9. | BERTHING LOAD:                                                                                                                                                                                                                                                                                                          |      |                                                    |
|    | FENDER PANELS AND FLOAT STRUCTURE SHALL ACCOMMODATE A FENDED DEACTION                                                                                                                                                                                                                                                   |      |                                                    |

| - 2: `            |                                                                                               | NO. | DATE | BY | REVISION | A RATA TATA |
|-------------------|-----------------------------------------------------------------------------------------------|-----|------|----|----------|-------------|
| 2022<br>35 Ska    |                                                                                               |     |      |    |          |             |
| lul 05,<br>210013 | трт                                                                                           |     |      |    |          | STAL 450    |
| tted: 、<br>2021   | 1601 5th Avenue, Suite 1300<br>Seattle, Washington 98101<br>(206) 382-0600 Fax (206) 382-0500 |     |      |    |          |             |
| M: /              |                                                                                               |     |      |    |          | TO THE KLOV |

## DS:

THE SITE DESIGNER TO ESTABLISH UTILITY LOADING AS DESIGN S ON THE OVERALL PROJECT.

MANUFACTURER SHALL PROVIDE FOUR LIFE PRESERVERS AND EXTINGUISHERS WITH THE FLOAT SYSTEM. THESE ITEMS SHALL AND MOUNTED TO THE FLOATS IN SUCH MANNER THAT THEY DO UPON THE FUNCTIONALITY OF THE FLOATING DOCK.

OLLARDS SHALL BE RATED FOR 150 TONS SAFE WORKING LOAD. OLLARDS SHALL BE DESIGNED WITH A LOAD FACTOR OF 1.6 PER -01 DESIGN PIERS AND WHARVES 2017.



| I     | RATED CAPACITY<br>P | RANGE OF<br>HORIZONTAL ANGLE<br><sup>0</sup> H | RANGE OF<br>VERTICAL ANGLE<br>θ <sub>V</sub> |
|-------|---------------------|------------------------------------------------|----------------------------------------------|
| FLOAT | 150 TONS            | 0° TO 180°                                     | 0° TO +60°                                   |

EQUIREMENTS:

ACENTRIC HEIGHT SHALL BE 2'-0" MIN. UNDER ALL LOADING

AND PILES:

S SHALL BE EXTERNAL TO THE FLOATS.

S SHALL HAVE A REMOVABLE BOLTED PORTION SUCH THAT THE BE DETACHED FROM THE SYSTEM AND MOVED.

SHALL BE LOCATED TO ONE SIDE OF THE FLOATS TO MAXIMIZE THE TED TRAVEL PATH. COORDINATE WITH ENGINEER ON FINAL PILE

S SHALL HAVE ADJUSTABLY TO ACCOMMODATE UP TO 6" OF PILE IN ANY DIRECTION. MAXIMUM SPACE BETWEEN PILES AND SHALL BE 1.5" AFTER SHIMS ARE PLACED.

SHALL HAVE UHMW PADS TO CONTACT THE PILES. THE PADS REMOVABLE IN A MANNER THAT DOES NOT REQUIRE HANDLING OR TO OCCUR BETWEEN THE PILE AND THE PAD. THE UHMW PADS E A MINIMUM OF 1.5" OF WEAR THICKNESS AVAILABLE.

NAVAL ARCHITECT, GLOSTEN ASSOCIATES, WILL MODEL THE FLOAT MINE FLOAT MOVEMENTS DURING STORM CONDITIONS THE FLOAT RE WILL WORK WITH THE MOS TO FINALIZE PILE HOOP DESIGN TO ATE THEM MOVEMENTS. IT MAY BE THAT FENDERS INSIDE THE PILE IEEDED.

15. FLOAT UTILITIES

- A. UTILITY ROUTING ON FLOATS ARE SCHEMATIC AND SHALL BE FINALIZED DURING DESIGN PROCESS
- 16. TRANSFER SPAN CONNECTION

THE TRANSFER SPAN CONNECTION SHALL ACCOMMODATE THE DEAD, LIVE AND WIND LOADS OF THE TRANSFER SPAN.

165 KIPS (ACCOUNTS FOR HALF OF THE TRANSFER SPAN WEIGHT) DEAD LOAD LIVE LOAD 112 KIPS

(THESE LOADS ARE APPROXIMATE AND WILL BE FINALIZED DURING DESIGN)

FLOAT COATINGS AND CORROSION PROTECTION 17.

> THE EXTERNAL SURFACE OF THE STEEL PONTOON FLOAT SHALL HAVE A MULTI LAYER CORROSION PROTECTION SYSTEM. THE COATINGS SHALL INCLUDE SPRAY METALIZING, A ZINC PRIMER AND A MARINE EPOXY PAINT THE COATINGS SYSTEM SHALL BE SUBMITTED TO MOS REVIEW.

> > CRUISE T SKAG

> > > FLOAT D

| ERMINAL FLOAT | DRAWN:   | DYU | PROJECT NO.: 2100135   |      |
|---------------|----------|-----|------------------------|------|
| WAY, ALASKA   | DESIGN:  | ED  | SCALE: AS SHOWN        | ┟┝── |
|               | CHECKED: | RR  | DATE: 06/15/2022       | ш    |
|               | DRAWING  | NO. | <b>F1 1</b>            | က    |
|               |          |     | 1 1.1                  |      |
|               | SHEET NO | ).  | <b>01</b> OF <b>03</b> | m    |



F1.2 نټ ъ ф ó š. 15, Jun ted:

| CRUISE T<br>SKAG | DE SKAGDZAF          | REVISION | BY | - |
|------------------|----------------------|----------|----|---|
| PRELIMINARY      | GRANCE TO THE KLOTTO |          |    |   |



|      | BY  | REVISION        | · 第六百六百九五八    | CRUISE T |
|------|-----|-----------------|---------------|----------|
| .022 | EJD | BID ADDENDUM #1 | OF SKAGWAP    | SKAG     |
|      |     |                 | STALL         |          |
|      |     |                 |               | FL       |
|      |     |                 | TO THE KLOTON |          |

ш BID